点击切换搜索课件文库搜索结果(2445)
文档格式:PPT 文档大小:53.5KB 文档页数:2
9.3.1预备计算 一、三角形闭合差与测角中误差 二、近似坐标——戎格公式
文档格式:PPT 文档大小:51KB 文档页数:1
9.2观测成果化至标石中心的计算 9.2.1三角形近似边长及球面角超的计算 9.2.2观测值化至标石中心的计算
文档格式:PPT 文档大小:174.5KB 文档页数:16
本章学习目标 ·链路、数据链路的概念,数据链路层的功能 ·停止等待协议的工作原理与过程 数据链路层是如何进行差错控制的 数据链路层流量控制的意义与方法 面向比特数据链路层协议HDLC的帧结构与帧分类 pPP链路协议的工作过程
文档格式:PDF 文档大小:564KB 文档页数:7
通过对低碳含铝钢20Mn2精炼过程的取样分析,得出精炼渣的熔化温度偏高,渣中存在大量固相CaO,并导致钢中含有CaO类夹杂物,精炼渣吸附夹杂物能力差.利用Fact Sage热力学计算,从渣的低熔点区域控制和渣-钢反应这两个方面对渣系进行研究与优化.结果表明,CaO/Al2O3质量比在1.5左右添加质量分数为3% CaF2可以有效降低渣的熔化温度,渣的熔化温度随着CaF2含量的升高呈现先降低后升高的趋势,MgO的质量分数控制5%左右低熔点区域面积达到最大.在SiO2质量分数大于30%区域,钢中氧含量大体上随着CaO/Al2O3质量比的增加而降低,在SiO2的质量分数低于30%区域随着CaO含量的升高而降低,钢中酸溶铝含量在SiO2含量高的区域随着Al2O3/SiO2质量比的增加而升高,在SiO2含量低的区域随着CaO/SiO2质量比的增加而增加.根据热力学分析结果得出合理的渣系范围:CaO 50%-60%,Al2O320%-35%,SiO25%-10%,MgO 5%-8%,CaF20-5%.优化渣系的实验结果表明,优化后渣系熔化温度降低,钢中夹杂物数量、面积和平均尺寸均有明显下降
文档格式:PDF 文档大小:909.57KB 文档页数:10
为了探讨钢中细小夹杂物的形成机制,采用扫描电镜和能谱仪表征了钢中夹杂物的形貌、尺寸、成分及数量,理论计算了脱氧产物的生成优势区图,讨论了夹杂物长大的影响因素.钢中夹杂物的组成以MgO-Al2O3-TiOx为核心,表面包裹析出MnS,钢液中未发现单独的Al2O3和TiOx夹杂;夹杂物的形貌为近球形,平均尺寸为1μm左右,数量在1000 mm-2以上.镁含量较高的钢中含有少量以MgO-Al2O3和MgO为核心的夹杂物,不利于夹杂物的球形化,镁含量宜控制在50×10-6以下.镁的脱氧能力强,形核临界尺寸小、形核数量多以及钢液中镁、铝和钛复合脱氧的高熔点产物的特性有效地控制了钢中夹杂物的扩散与碰撞长大趋势
文档格式:PPT 文档大小:53.5KB 文档页数:2
8.1高斯投影概述 8.1.1投影与变形 8.1.2控制测量对地图投影的要求等角投影(正形投影)
文档格式:PDF 文档大小:286.23KB 文档页数:5
对45 t电炉终点碳控制技术进行研究,优化了冶炼工艺及用氧制度,改进了泡沫渣工艺.电炉氧化末期钢水碳的合格率得到较大提高,减少了脱氧材料加入量,在一定程度上降低了LF座包钢水中的氧含量.通过优化泡沫渣工艺,电炉炉盖结冷钢现象已基本杜绝,炉子水冷件漏水现象大幅度减少,缩短了热停时间
文档格式:PPT 文档大小:63KB 文档页数:2
6.2.1GPS的构成 一、空间卫星 二、地面控制站 三、用户接收机
文档格式:PDF 文档大小:474.9KB 文档页数:5
为了分析真空热还原制取金属锂的还原效率和还原率,综合考虑罐内球团传热和化学反应,建立了传热与反应动力学耦合模型.利用该模型对单球团和还原罐内球团还原过程进行数值模拟,得到了球团温度及还原率的时间分布,并分析了罐外换热系数对球团还原过程的影响.结果表明:球团低导热率和反应等效热汇是影响还原过程的主要因素,罐中心区域和罐壁处的温度和反应速率存在较大差值;还原初期传热为还原过程的主要控制因素,而反应后期化学反应为主要控制因素;罐外换热系数对还原过程影响不大,增强罐内传热是提高还原效率的有效途径
文档格式:PDF 文档大小:704.51KB 文档页数:9
本文研究了三种碳-锰、碳-锰-铌钢控制轧制中铁素体晶粒细化的规律。大量试验证明,热轧后钢中铁体晶素粒尺寸(dF)主要受形变量(ε)、形变温度(TD)、原始奥氏体晶粒尺寸(dA)及冷却速度、钢中成分的影响。在单道次轧制中这三种钢的铁素体晶粒尺寸与各参数的综合定量关系皆可用下式表达:${{\\rm{d}}_{\\rm{F}}}=\\frac{{55{\\rm{th}}\\frac{{{{\\rm{d}}_{\\rm{A}}}-90}}{{25}} + {\\rm{a}}}}{{\\rm{\\varepsilon }}} + {\\rm{b}}{T_{\\rm{D}}}-750{^{\\frac{1}{2}}} + {\\rm{c}}{{\\rm{d}}_{\\rm{A}}}$将式中的dA改为\等效奥氏体晶粒尺寸\,此式就可应用于多道次轧制,予测多道次轧制后的铁素体晶粒尺寸
首页上页200201202203204205206207下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2445 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有