点击切换搜索课件文库搜索结果(4907)
文档格式:PDF 文档大小:388.2KB 文档页数:6
在成功筛选出一株高产乳酸的乳酸菌USTB-08基础上,分别采用批量和补料发酵培养,通过改变碳源、氮源、碳氮比、温度和pH值等研究了乳酸菌USTB-08生长和产乳酸的优化控制条件.采用蔗糖和酵母膏作为唯一碳源和氮源(碳氮质量比为5:1)、温度35℃、接种量1.0%及初始pH 6.50是提高乳酸菌生长的优化参数.进一步在50L全自控发酵罐中,采用质量分数为10%氢氧化钠和25%蔗糖混合溶液作为控制pH值和碳源补料的流加液,在pH 6.00~7.00范围内,恒定控制pH 6.50获得了最大的乳酸菌生物量(OD680nm 13.2),而恒定控制pH 7.00则获得了最高的乳酸含量(28.0 g·L-1).本研究首次采用控制pH值与流加蔗糖同步进行的培养方式,获得了高细胞浓度的乳酸菌和高质量浓度的乳酸
文档格式:PDF 文档大小:435.02KB 文档页数:7
为提高结构频响函数模型修正效率,提出将Kriging模型引入优化过程,代替有限元模型进行迭代运算.基于频响曲线对应频率点处的响应值之差构造目标函数,并结合初选设计参数进行实验设计.根据实验设计结果进行各参数的灵敏度分析,进而筛选出模型修正的待修正参数,基于该参数及其响应构造Kriging模型,经检验有效的Kriging模型将参与模型修正过程.以GARTEUR飞机模型为算例,基于加速度频响数据进行模型修正,修正后模型不仅能复现检验点处频响曲线,还能成功预测结构局部修改后的频响曲线,证明了Kriging方法应用于频响函数模型修正的有效性
文档格式:PDF 文档大小:1.31MB 文档页数:8
基于双亚点阵模型,计算了两种不同铌含量的高钢级管线钢在不同温度下Nb、Ti和Al的析出量,测定了不同加热温度和保温时间下奥氏体晶粒尺寸,建立两种钢奥氏体晶粒长大模型.发现Nb含量增加提高了其全固溶温度,并且温降过程中Nb析出量显著增多,在晶界两边析出的细小碳氮化物对奥氏体晶粒长大有显著的阴碍作用.高铌钢加热温度为1250℃时奥氏体晶粒显著粗化,预测模型也不同于1050~1200℃的模型,但相同保温温度下晶粒尺寸明显小于低铌实验钢.通过数据拟合计算出高铌钢的长大激活能远远高于低铌钢,再次证明高Nb的管线钢在1200℃以下能够有效地细化奥氏体晶粒,预测模型与实验值吻合较好
文档格式:PDF 文档大小:18.15MB 文档页数:8
使用原位观察方法研究了不同凝固条件H13钢铸锭样品中液析碳化物的高温行为.实验发现连铸锭及电渣锭两种样品在所研究的枝晶间存在明显的合金元素偏析,其中Cr、Mo、V、C的偏析较为明显,液析碳化物存在于凝固枝晶间偏析最严重的区域,成分为V、Mo、Cr、Ti的液析碳化物.连铸锭及电渣锭两种样品分别在1200℃及1250℃围绕液析碳化物周围出现局部液相,理论计算的局部液相出现温度与实验观察到的接近;随着温度的升高,局部液相范围扩大,与电渣锭相比,加热至相同温度时,连铸锭液析碳化物周围的局部液相范围更大.液析碳化物周围局部液相的出现加快了枝晶间合金元素的扩散,对液析碳化物的高温行为具有重要影响
文档格式:PDF 文档大小:551.87KB 文档页数:7
针对轧制过程非稳态及润滑特性,通过流体力学分析,建立稳态、非稳态轧制变形区油膜厚度分布模型,提出油膜波动系数以研究油膜厚度的绝对波动,应用卡尔曼微分方程分析了稳态、非稳态轧制界面应力分布,并以稳态应力分布为基础提出应力波动系数以研究变形区应力的绝对波动.结果表明:稳态下压下率增加,轧制界面油膜变薄,压应力、切应力均增加;非稳态下随着入口板带厚度等扰动因素的波动加剧,油膜波动系数变大,绝对波动加剧;不同时刻非稳态压应力波峰的位置和数值都会发生变化;相比于切应力,油膜波动对压应力的影响比较大,当油膜厚度发生6.33%的绝对波动时,压应力和切应力分别产生1.17%和0.24%的绝对波动
文档格式:PDF 文档大小:578.07KB 文档页数:6
在PLINT微动磨损试验机上附加电化学测试系统,采用十字交叉接触方式,位移幅值为100μm,法向载荷20、50和80 N条件下,研究NC30Fe合金传热管在氯化钠溶液中的微动腐蚀行为.使用电化学工作站记录微动腐蚀过程中开路电位变化,运用电位扫描法测量微动过程的极化曲线;采用扫描电子显微镜观察磨痕的表面形貌,光学轮廓仪测定磨痕的三维形貌及磨损量.微动磨损使损伤区域金属原子活性增大,腐蚀倾向增大,加速了NC30Fe合金的腐蚀.在氯化钠溶液中,NC30Fe合金由于微动磨损过程产生腐蚀产物膜起到润滑减摩作用,摩擦系数较纯水中降低;但因腐蚀与磨损的交互作用,在氯化钠溶液中的磨损量比纯水中高.氯化钠溶液中的磨损机制主要表现为磨粒磨损和剥层的共同作用
文档格式:PDF 文档大小:678.04KB 文档页数:9
本文包括:(1)炉膛内钢坯加热数学模型;(2)最佳炉温及最低燃耗在线模型。采用一维模型,应用Hottel多层无限大气层间的辐射热交换计算方法,把各火焰射流的作用,当量地看作是夹在上下炉气层之间的一个火焰层。它的平均温度tf可以根据Ricou-Spalding射流吸入经验公式,计算火焰和周围炉气间的质量交换,再按热平衡方程把tf计算出来。钢坯内部传热按一维导热问题,用差分求解。还建立了一个较简单的炉膛传热仿真模型,据此求出各炉段单位炉温对出钢平均温度及中心温度的变化率?θm/?Ti及?θs/?Ti。还可确定最小燃耗函数P的各炉段加权系数Wi。令各段在线炉温调节量ΔTi=(Ti,max-Ti,o)-ΔT'i,这就能在线性规划中用ΔT'i代替ΔTi作为未知量以满足非负条件。这时目标函数Pmin=-sum (ΣWiT'i)。文中还附有一个说明各段炉温按上述线性规划进行最佳控制的例题
文档格式:PDF 文档大小:904.11KB 文档页数:13
利用下列组装的固体电解质定氧电池:Mo|Mo,MoO2‖ZrO2(MgO)‖[Nb],NbO2|Mo+ZrO2金属陶瓷,Mo对Fe-Nb熔体中Nb的活度在三个温度下(1823、1853及1873K)进行研究。在净化的氩气气氛下,将固态NbO2细粉撒布在含铌铁液之上,以取得[Nb]与[O]的反应迅速达到平衡。有时不加任何固体料,使熔体中形成的脱氧产物自己上浮,此脱氧产物热力学证明是NbO2。对测定的a0实验数据进行加工处理,求出下列结果:1.脱氧反应的自由能[Nb]+[O]=NbO2(s); △G°=-89710+28.27T2.Nb在铁液中的溶解自由能Nb(s)=[Nb]%; △G=-32090+7.9T; γ$\\mathop 1\\limits^{\\rm{^\\circ }} $873=1.60Nb(l)=[Nb]%; △G°=-38520+10.24T;γ$\\mathop 1\\limits^{\\rm{^\\circ }} $873=0.923.Nb本身的活度相互作用系数${\\rm{e}}_{{\\rm{Nb}}}^{{\\rm{Nb}}} = \\frac{{2274}}{{\\rm{T}}} - 1.44$1873K的${\\rm{e}}_{{\\rm{Nb}}}^{{\\rm{Nb}}} = - 0.22$当(Nb)含量大约低于0.2时,脱氧产物和其他合金元素如Al、Cr、V等相似,形成了复合氧化物如FeO·NbO2。后者的生成自由能估计为:Fe(1)+$\\frac{3}{2}$O2+Nb(s)=FeO·NbO2(s);△G°=-383800+121.95T随着熔体中(Nb)含量的继续下降,对生成其他脱氧产物的可能性,本文也进行了讨论
文档格式:PDF 文档大小:2.06MB 文档页数:14
本文利用冲击韧性试验、扫描电镜、离子探针及俄歇谱议等手段研究讨论了合金元素Si和Mn对Si-Mn-Mo-V钢在淬火和低温回火状态下韧性的影响规律。研究结果表明:当钢中不含Si或含有少量Si面单独加入Mn,则由于Mn-P在晶界共偏析的原因,使P在晶界的浓度大为增加,导致了钢在淬火和低温回火状态下沿晶断裂的发生,从而降低了钢的韧性水平。在高Mn(2%Mn)钢中加入Si,由于Si在晶界的富集及Si-P的相互排斥作用,使P在晶界的偏析浓度下降。从而在一定程度上抑制了晶界脆性的发展和晶界断裂的发生,使钢的韧性水平显著提高。本文还研究了Si和Mn对Si-Mn-Mo-V钢低温回火脆性(350℃脆性)的影响。实验结果表明:低温回火脆性既与杂质元素的晶界偏析有关,又与ε碳化物向渗碳体转化及渗碳体沿原奥氏体晶界成薄片状析出有关,由于Si和Mn既能影响杂质元素,特别是P在晶界的偏聚,又能影响ε碳化物向渗碳体转化,故Si和Mn对Si-Mn-Mo-V钢低温回火脆性发生的温度和强烈程度均有显著的影响
文档格式:PDF 文档大小:464.41KB 文档页数:4
采用热挤压和冷轧工艺生产HR3C无缝钢管,金属冷成型过程和成品性能均表明热挤压加冷轧工艺生产高合金难变形材料具有明显优势.热挤压加工变形时金属承受三向压应力,可以提高金属的综合性能;通过冷轧加工改善管材表面质量和尺寸精度,可以确保材料在特殊环境中使用安全性更高
首页上页204205206207208209210211下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4907 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有