点击切换搜索课件文库搜索结果(304)
文档格式:PDF 文档大小:1.51MB 文档页数:11
为了研究煤自燃发火气体产物与煤分子官能团之间的内在联系,进一步揭示煤自燃发火过程的微观变化特性,利用程序升温实验装置和原位红外光谱分析实验系统,得出了气体产物生成量和活性官能团含量之间的关联性。结果表明:CO、C2H4等指标气体浓度伴随温度升高显示为抛物线模式增长;活性官能团中,随着温度的不断升高,脂肪烃含量先持续增大,之后开始逐渐下降,C=C双键含量不断下降,含氧官能团含量先趋于稳定后逐渐增加。根据指标气体浓度变化,获得了高温反应过程中的5个特征温度点,进一步将其分为临界温度阶段、干裂–活性–增速温度阶段、增速–燃点温度阶段和燃烧阶段4个阶段,并对三个高温氧化阶段进行关联性分析发现:在临界温度阶段,影响CO、CO2、CH4和C2H6气体释放的主要活性官能团是羰基;在干裂–活性–增速温度阶段烷基链和桥键发生大量断裂,影响气体产物的主要活性官能团是脂肪烃和羰基;在增速–燃点温度阶段气体浓度与羰基和羧基等官能团呈负相关。得出干裂–活性–增速温度阶段是高温氧化过程中的危险阶段,需在该阶段前对氧化反应进行控制,以减少人员和物质损失
文档格式:PDF 文档大小:1.76MB 文档页数:10
针对漏钢时结晶器铜板温度呈现出的“时间滞后”和“空间倒置”等典型特征,本文通过引入动态时间弯曲(DTW)和机器学习中的密度聚类(DBSCAN)方法,提取、汇集并区分结晶器温度的典型变化模式,在此基础上开发出一种新型的漏钢预报方法。借助动态时间弯曲度量不同拉速、钢种或工艺操作条件下结晶器热电偶温度的相似性,并运用密度聚类方法聚集和分离正常工况、黏结漏钢状况下的温度样本,在此基础上检测和预报结晶器漏钢。结果证实,相较于传统的逻辑判断和人工神经元网络预报结晶器漏钢的方法,基于聚类的漏钢预报方法无需人为设置阈值或参数,能够依据漏钢历史样本中温度变化的共性规律,提取并融合热电偶温度在时间、空间上典型的变化特征,准确区分和预报结晶器漏钢,具有较好的自适应性和鲁棒性
文档格式:PDF 文档大小:1.35MB 文档页数:9
采用反应烧结法制备了MgAlON结合的镁质、镁铝尖晶石质和刚玉质试样,研究了不同主晶相对MgAlON单相结合相形成温度的影响及化学反应引起的体积膨胀和氧化物挥发对材料烧结的影响.结果表明:虽然用以形成MgAlON结合相的混合细粉的组成和数量都相同,但MgAlON结合的镁质、镁铝尖晶石质和刚玉质试样中形成MgAlON单相结合相的温度是不同的,依次呈升高趋势;MgAlON结合镁质试样在烧成过程中体积显著膨胀,MgO大量挥发,烧后试样镁砂颗粒和基质结合松散,密度低,强度小;MgAlON结合刚玉试样在烧成过程中体积膨胀小,氧化物挥发少,烧后试样刚玉颗粒和基质结合紧密,密度较高,强度较大;而MgAlON结合镁铝尖晶石试样烧成过程中的体积膨胀量、氧化物挥发量,烧后试样颗粒和基质的结合程度、密度和强度都介于前两者之间
文档格式:PDF 文档大小:783.09KB 文档页数:4
以MoO3、Si粉和Al粉为原料,采用机械化学还原法制备了Al2O3-Mo3Si/Mo5Si3纳米复合粉体.利用X射线衍射(XRD)、激光粒度分析仪(LPS)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和差热-热重分析(DTA-TG)等对复合粉体和球磨过程中粉体的固态反应过程进行表征.结果显示,MoO3-Si-Al混合粉体球磨5h后转变为Al2O3-Mo3Si/Mo5Si3复合粉体,反应为机械诱导的自蔓延反应.球磨20h后,Mo3Si、Mo5Si3和Al2O3的晶粒尺寸分别为27.5、23.3和31.8nm,产物具有纳米晶结构,粉体平均粒度为3.988μm,颗粒呈球形,分布均匀.DTA分析表明,复合粉体在机械化学反应过程中首先发生MoO3和Al之间的铝热反应,之后将发生一系列Mo和Si之间的反应,生成Mo5Si3和Mo3Si
文档格式:PDF 文档大小:1.3MB 文档页数:9
以厦门福隆大厦为背景,对不规则高层结构的1/20整体模型进行模拟地震振动台试验研究,测试了模型结构的动力特性、阻尼比及其在7度多遇、7度基本、7度罕遇烈度地震作用下的加速度和位移反应等,研究了模型结构的破坏机理和破坏模式.结果表明:模型结构前三阶振型频率依次为:1.74Hz(Y向平动)、2.28Hz(X向平动)和3.12Hz(整体扭转),其中X向和Y向平动对应阻尼比分别为6.5%和6.3%.在7度多遇和罕遇地震作用下,X向结构最大层间位移角分别为1/956和1/147,Y向结构最大层间位移角分别为1/570和1/83.因此原型结构的布置基本合理,整体抗震性能较好.最后对原型结构的抗震设计方案提出了一些改进建议
文档格式:PDF 文档大小:1.78MB 文档页数:9
设计了不同相构成的超高强DH钢,抗拉强度均大于1300 MPa,组织由铁素体、马氏体、残留奥氏体和极少量碳化物构成。对比了不同相构成对超高强DH钢力学性能和应变硬化行为等的影响,并深入研究了残留奥氏体在超高强度DH钢中的作用机制。结果表明:随着马氏体和残留奥氏体体积分数的增大,铁素体体积分数的减小,实验钢屈服和抗拉强度同时升高,而延伸率呈先增大后减小趋势。软韧相铁素体体积分数的减小和硬相马氏体体积分数的增大导致屈服强度和抗拉强度增加。相对于回火马氏体,淬火马氏体对强度的提升更显著,在拉伸过程中转变的残留奥氏体的量是引起延伸率变化的主要原因,组织中显著的带状组织会造成颈缩后延伸率的明显降低。通过对应变硬化行为的分析表明,随着真应变的增大,应变硬化率呈减小的趋势,在真应变大于2%后的大范围内,对于应变硬化率,DH1>DH2>DH3,主要与铁素体体积分数有关;在真应变大于5.73%后,DH2钢的应变硬化率高于DH1钢和DH3钢,主要与DH2钢中更显著的TRIP效应有关。除了残留奥氏体体积分数,残留奥氏体中的碳含量对TRIP效应同样有显著的影响。较高比例的硬相马氏体组织结合适当比例的软韧相铁素体和残留奥氏体有助于DH2钢获得最良好的强塑积13.17 GPa·%,其中屈服强度达880 MPa,抗拉强度达1497 MPa,均匀延伸率为6.71%,总伸长率为8.8%,颈缩后延伸率为2.09%,屈强比0.59
文档格式:PDF 文档大小:1.95MB 文档页数:11
针对平整轧制过程不同用途带钢对表面微观形貌的特殊要求,在批量跟踪电火花毛化轧辊、磨削轧辊和冷轧后带钢表面微观形貌的基础上,建立工作辊与带钢都可考虑真实表面粗糙峰的带钢表面微观形貌轧制转印生成模型,采用工业实验验证了仿真模型的准确性,并据此模型分析轧制前带钢已经具有表面粗糙度分别大于、等于、小于轧辊表面粗糙度时,带钢表面微观形貌的轧制转印行为与遗传演变规律。提出了负转印和转印饱和的概念,定义了两种极限轧制转印状态的描述指标— —负转印最大和转印饱和,研究发现当带钢表面粗糙度小于或等于轧辊表面粗糙度时,存在负转印最大点和转印饱和点;当带钢表面粗糙度大于轧辊表面粗糙度时,负转印最大点和转印饱和点重合。在此基础上,采用负转印最大点与转印饱和点对应的临界板宽轧制力,描述带钢表面微观形貌的遗传及演变规律,并系统仿真分析带钢屈服强度、带钢轧前表面粗糙度、轧辊表面粗糙度等工艺条件参数对于负转印最大点与转印饱和点对应的临界单位板宽轧制力的影响规律,发现随着带钢屈服强度增大和轧辊表面粗糙度增加,该临界单位板宽轧制力均增大;随着带钢表面粗糙度增大,负转印最大点对应的临界单位板宽轧制力增大,但转印饱和点对应的临界单位板宽轧制力却减小
文档格式:PPT 文档大小:83.5KB 文档页数:15
一、物流标准化的概念与特点 标准是指为取得全局的最佳效果,在总结实践 和充分协商的基础上,对人类生活和生产技术 活动中,具有多样性和重复性特征的事物和概 念,以特定的程序和形式颁发的统一规定。 标准化是在经济、技术、科学及管理等社会实 践中,对重复性事物和概念通过制订、发布和 实施标准,达到统一,以获得最佳秩序和社会 效益
文档格式:PDF 文档大小:1.19MB 文档页数:5
研究了单级固溶和双级固溶热处理工艺对喷射成形Al-Zn-Mg-Cu铝合金力学性能的影响.应用光学显微镜、扫描电镜与透射电镜对显微组织和第二相颗粒的固溶及沉淀析出状况做了进一步的研究.结果表明:双级固溶时效和单级固溶时效处理制度相比,前者得到的组织和力学性能较为理想;双级固溶处理综合了低温单级固溶和高温单级固溶的优点,即再结晶晶粒尺寸较小,同时回溶颗粒较多.时效后的组织也较理想.采用双级固溶处理(450℃/3h+480℃/3h)和T6时效处理后,合金的抗拉强度和屈服强度分别达到806MPa和797MPa,延伸率达到7.5%
文档格式:PDF 文档大小:1.12MB 文档页数:7
采用高精度微动磨损试验机SRV Ⅳ研究蒸汽发生器传热管材料Inconel600合金在不同位移幅值下的微动磨损行为,分析了位移幅值对摩擦因数和磨损体积的影响.采用光学显微镜和扫描电子显微镜观察磨损表面和截面的形貌,并用透射电子显微镜对摩擦学转变组织进行观察.结果表明:随位移幅值的增加,摩擦因数和磨损体积逐渐增大,材料的微动行为先后经历以黏着为主的部分滑移区以及滑动为主的完全滑移区;磨损机制也由黏着磨损逐步转变为氧化磨损和剥层磨损的共同作用;微裂纹出现在黏着区域和滑动区域的交界处以及滑动区域内;黏着区氧分布密度和磨痕外基体的相一致,氧化主要发生滑动区域;磨痕亚表层的组织发生了严重的塑性变形,产生纳米化现象,摩擦学转变组织的晶粒尺寸约100 nm,远小于原始组织的15~30μm
首页上页1920212223242526下页末页
热门关键字
搜索一下,找到相关课件或文库资源 304 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有