点击切换搜索课件文库搜索结果(1160)
文档格式:DOC 文档大小:573.5KB 文档页数:10
1.某温度时,NH4C(s)分解压力是标准压力,则分解反应的平衡常数K为: C(A)1(B)1/2(C)1/4(D)1/8
文档格式:DOC 文档大小:45.5KB 文档页数:5
1.在298K,101.325kPa下将直径为1um的毛细管插入水中问需在管内加 多大压力才能防止水面上升? 若不加额外的压力让水面上升达平衡后管内液面上升多高? 已知该温度下水的表面张力为0.072N/m水的密度为1000kgm-3设接 触角为0度。重力加速度为g=9.8m/s2
文档格式:PDF 文档大小:1.72MB 文档页数:13
油气主要储集在岩石孔隙和缝洞内,深部复杂应力环境下储层岩石裂隙渗透演化直接影响油气的运移规律,是油气勘探开发的重要研究对象。为了解复杂应力路径下含裂隙岩石的渗透演化特性,利用高精度渗流?应力耦合三轴实验设备,对含随机分布裂隙泥岩开展了单试样?复杂应力路径加卸载过程中的渗透性演化试验研究,试验方案依次为:(i) 围压递增条件下渗透性测试;(ii) 渗透压力递增条件下渗透性测试;(iii) 偏应力循环加卸载条件下渗透性测试;(iv) 围压、偏应力同步增长条件下渗透性测试。结果表明裂隙泥岩中的渗流可视为低渗流速度的层流;裂隙发育丰富岩样(R2)渗透率及应力敏感性明显较高。渗透率随渗透压力、围压分别呈正、负的指数函数变化。偏应力加载导致渗透率降低,卸载引起渗透率上升,但整体呈不可逆降低;围压、偏应力同步增长引起渗透率呈下降趋势,并逐步趋于稳定;围压10.3 MPa作用下,渗透率基本保持恒定。由此,基于裂隙双重介质模型,考虑泥岩变形过程中裂隙系统和基质系统的相互作用以及外部应力作用下的裂隙膨胀变形,构建了裂隙泥岩渗透率演化力学模型;模型模拟结果与试验结果具有较好的一致性。相关成果可为裂隙泥岩渗透性演化预测和油气高效开采提供重要的理论依据
文档格式:PDF 文档大小:1.18MB 文档页数:10
为了提高小型两床变压吸附(PSA)制氧机在变产品气流量下的氧气体积分数,建立了改进的Skarstrom两床循环PSA制氧实验装置,研究了产品气流量对其氧气体积分数的影响。研究结果表明,在低产品气流量运行条件下,通过提高清洗气总氧量与原料气总氧量之比(P/F)以及降低最高吸附压力与最低解吸压力之比(θ)可消除氧气返混的不利影响;在高产品气流量运行条件下,通过提高P/F和θ可以提高实验装置中分子筛的工作能力,进而提高产品气中的氧气体积分数。在此基础上,对低和高产品气流量运行条件下的P/F和θ进行了调节,分别将产品气流量为3.55 L·min?1和19.88 L·min?1时的氧气体积分数从92.4%增加至了95.7%和从74.0%增加至了74.9%。本文的研究结果可为变产品气流量下PSA制氧工艺参数优化提供参考
文档格式:DOC 文档大小:52.5KB 文档页数:6
1.5 mol He(g)从273.15K和标准压力变到98.15K和压力p=10×,求过程的ΔS.(已知Cm=3/2) 2.0.10kg283.2K的水与0.20kg313.2K的水混合,求△S设水的平均比热为4.184k/(kkg)
文档格式:PPS 文档大小:676KB 文档页数:27
3.1给水所需的水压 3.1.1给水系统所需压力的估算 3.1.2给水系统所需压力的计算 3.2增压、贮水设备及水表 3.2.1水泵 3.2.2贮水池、吸水井 3.2.3水箱 3.2.4气压给水设备 3.2.5水表的选型
文档格式:DOC 文档大小:510KB 文档页数:5
2.1如图,圆柱闸门长L=4m,直径D=1m,上下游水深分别为H1=1m,H2=0.5m,试 求长柱体上所受的静水总压力。(参考分数:12分) 2.2如图,圆弧形闸门长L=2m,弧ABC直径D=2m,上下游水深分别为H1=2m,H2=1m, 试求圆弧形闸门上所受的静水总压力。(参考分数:12分)
文档格式:PPT 文档大小:3.4MB 文档页数:146
一、液压控制阀 作用:对执行元件(工作机构)进行控制和调节。 分类:按工作原理分方向控制阀(液流方向) 压力控制阀(压力大小) 流量控制阀(流量大小)
文档格式:PDF 文档大小:191.49KB 文档页数:21
4.5.1概述 4.5.2低循环疲劳曲线 4.5.3压力容器的疲劳设计 4.5.4影响疲劳寿命的其它因素
首页上页2526272829303132下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1160 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有