点击切换搜索课件文库搜索结果(63)
文档格式:PDF 文档大小:177.37KB 文档页数:9
定理5.2.1(levi定理)若n(x)为可测集E上的非负可测函数列, 且满足中(x)≤中+1(x),中n(x)→f(x)(n→+∞),则 fdx= lim 中dx n-JE 证明G(f,E)={(x,y)0≤y
文档格式:PPT 文档大小:250KB 文档页数:16
1.函数列的几种收敛定义 (1)点点收敛:记作fn→EVx∈E,Ve>0,3Nx>0,tn≥2x,有丨fn(x)-f(x)k (2)一致收敛: V>0,3N>0,n≥n,tx∈,有fn(x)-f(x)k注:近似地说一致收敛是函数列
文档格式:PDF 文档大小:193.49KB 文档页数:7
本章将利用 Lebesgue积分的理论证明对一类更一般的函数成立相应的结果本章所讨论的 函数都是定义在区间上的实值函数(不取±∞为值).凡本章所涉及到的可测性,测度和几乎 处处等概念都是关于 Lebesgue测度空间(R,m(r),m)而言的
文档格式:DOC 文档大小:270KB 文档页数:60
1排版 2注释 3标识符命名 4可读性 5变量、结构 6函数、过程 7可测性 8程序效率 9质量保证 10代码编辑、编译、审查 11代码测试、维护 12宏
文档格式:PPT 文档大小:388.5KB 文档页数:42
目的:熟悉左、右导数的概念,理解为 什么单调函数几乎处处有有限导数。 重点与难点:单调函数的可导性及其证 明
文档格式:PDF 文档大小:131.75KB 文档页数:5
我们定义 Lebesgue积分的初衷之一是求函数下方图形G(/,E)(以非负函数 为例)的测度,然而到目前为止,我们只定义了可测函数的积分,是否有下方图 形G,B是可测集,因本身不是可测函数的f而未定义积分值呢?下述截面定理 将让我们打消此顾虑。为此,我们先引入截面概念
文档格式:PPT 文档大小:243.5KB 文档页数:14
例区间是可测集,且ml 证明见书本p66 注:零集、区间、开集、闭集、G型集(可数个开集的交)、 F。型集(可数个闭集的并)、 Borel型集(粗略说:从开集出发 通过取余,取交或并(有限个或可数个)运算得到)都是可测集
文档格式:PDF 文档大小:124.5KB 文档页数:3
在以下各题中, 可测集, 可测函数和测度, 除题目中已有说明的外, 都是关于某一给定的可测空间(X , F ) 或测度空间(X , F ,µ) 的
文档格式:PDF 文档大小:129.72KB 文档页数:3
在以下各题中, 可测集, 可测函数和测度, 除题目中已有说明的外, 都是关于某一给定 的可测空间(X, F ) 或测度空间(X, F ,µ) 的
文档格式:PPT 文档大小:324KB 文档页数:38
目的:进一步了解单调函数的性质,熟悉 有界变差函数的定义,掌握其性质。 重点与难点:单调函数的性质,有界变差 函数的定义及其性质
上页1234567下页
热门关键字
搜索一下,找到相关课件或文库资源 63 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有