点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:41KB 文档页数:1
V带传动 一、选择与填空 1.带传动正常工作时,紧边拉力F1和松边拉力F2满足关系 (1)F1=f2(2)1-f2=fe(3)f1/1=efa(4)1+f2=F 2.若将传动比不为1的平带传动的中心距减少1/3,带长做相应调整,而其它条件不变, 则带传动的最大有效拉力Fec (1)增大(2)不变(3)降低
文档格式:DOC 文档大小:145.5KB 文档页数:2
一.填空: (1)[f(t)dt (2)∫(x+a2-x2)2dx (3) d (4)已知f(x)=x+2f(x)d,则f(x)= dx (5) 0x2+6x+18 (6) tsin tdt= (7)设f(x)是连续函数,且F(x)=f(t)dt,则F(x)=
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:PDF 文档大小:78.65KB 文档页数:2
1.4因式分解 定义4.1设p(x)是Q上的一个次数大于0的多项式如果 p(x)在[x]中没有真因子,则称是既约多项式(不可约 多项式或质式) 设p是一个既约多项式,f是任意多项式,则(p,f)是 p的因式,从而(p,f)=1或p=c(p,f),c∈因此p和f 二的关系是:(p,f)=1或plf. 命题4.1设p(x)是Q上的即约多项式,若p(x)整除 二多项式f(x)f(x)之积,则p(x)必能整除其中之一
文档格式:PPT 文档大小:878KB 文档页数:56
8.1分组密码概述 定义 8.1一个分组密码是一种映 10 9 射:F2F2→F 记为E(X,K)或F(X),X∈F2,K∈F2,F2 称为明文空间,F2称为密文空间, 为密钥空间
文档格式:PPT 文档大小:798.5KB 文档页数:30
一、原函数与不定积分的概念 定义:如果在区间内,可导函数F(x)的 导函数为f(x),即Vx∈I,都有F'(x)=f(x) 或dF(x)=f(x)dx,那么函数F(x)就称为f(x) 或f(x)dx在区间内的一个原函数 例(sinx)=cos sinx是cosx的原函数
文档格式:PDF 文档大小:232.25KB 文档页数:33
多元函数 定义11.2.1设D是R上的点集,D到R的映射 f:D→R, XH> 称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D)= {∈R|z=f(x),x∈D}称为f的值域,={(x,z)∈R+1|z=f(x),x∈D}称 为f的图象
文档格式:PDF 文档大小:168.94KB 文档页数:7
在数学分析课程中我们知道,微分与积分具有密切的联系.一方面,若f(x)在 【a,b]上连续,则对任意x∈[a,b]成立f(d=f(x)另一方面,若f(x)在[a,b] 上可微,并且f(x)在[a,b]是 Riemann可积的,则成立牛顿莱布尼兹公式 f'(x)dx f(b)-f(a)
文档格式:PPS 文档大小:1.14MB 文档页数:12
拉氏变换的定义和性质 定义有时域函数f(t)则(s)f(dt 也可表示成F(s)=[f(t)] 拉氏反变换f(t)=-[F(s)] 其中s=o+jo是复数,f(t)称原函数F(s)称象函数
文档格式:PPT 文档大小:43KB 文档页数:1
定理1 设函数f(x)和g(x)在点x连续,则函数 f(x)±g(x,f(x)g(x), f(x) (当g(x)≠0时) 在点x也连续. 证明f(x)±g(x)的连续性: 因为f(x)和g(x)在点x,连续,所以它们在点x有定义, 从而f(x)g(x)在点x也有定义,再由连续性定义和极限运 算法则,有
上页12345678下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有