点击切换搜索课件文库搜索结果(523)
文档格式:PDF 文档大小:608.68KB 文档页数:5
在Gleeble 3500热模拟试验机上进行热压缩实验、采用动态材料模型理论、双曲线本构方程及Liapunov稳定性判据,建立了T122耐热钢热变形加工图.利用所建立的加工图,分析了不同温度和应变速率下T122钢的热成形性及其与显微组织的关系、结果表明:T122钢在1085℃以上、应变速率小于0.37s-1压缩变形时,功率耗散效率达到峰值0.2,此时发生了完全动态再结晶;对于工业热加工,建议在变形温度为1085~1150℃和应变速率大于0.13s-1的范围内选择加工参数
文档格式:PDF 文档大小:359.68KB 文档页数:3
以加热炉中烟气出口处蓄热体为研究对象,建立了一维非稳态导热过程的数学模型,采用有限差分法进行模型的离散化.使用C++语言开发了计算球体蓄热体热饱和时间的程序,确定了蓄热体热饱和时间与各种影响因素之间的关系.结果表明,对流换热系数的增加会缩短蓄热体的热饱和时间,而蓄热体热容、密度及其半径的增加均使得蓄热体的热饱和时间线性增加
文档格式:PDF 文档大小:1.88MB 文档页数:9
为了提高实际生产中中间包等离子加热热效率,改善中间包内钢液流动状态,本文根据某钢厂中间包原型,通过物理模拟对比研究了有无等离子加热和不同等离子加热位置下中间包内温度场和流场的变化情况。研究结果表明,在无等离子加热条件下,中间包内死区比例较高,达到了36%,死区主要集中在中间包挡墙外侧上部区域;当加热位置位于挡墙外侧时,中间包内死区比例与不加热时相差不大,靠近加热位置处的温度急剧上升,挡墙内外两侧的温度差较大,中间包内整体温度分布不均匀;加热位置位于挡墙内侧时,中间包死区比例明显降低,达到29.2%,平均停留时间约增加57 s,出水口温度明显上升(约7 ℃),中间包内温度分布更均匀
文档格式:PPT 文档大小:234.5KB 文档页数:50
重点要求掌握掌握热力学的一些基本概念、热力学第一 定律 ;掌握用标准摩尔生成焓、标准摩尔燃烧焓计算化学 反应热的方法;掌握根据盖斯定律或利用状态函数的基本 特征、设计过程、计算化学反应热的方法,学会用吉布斯 自由能变ΔrGm判断标准状况下等温等压化学反应方向 等。 6.1 热力学第一定律 6.2 热化学 6.3 化学反应的方向
文档格式:PPT 文档大小:640.5KB 文档页数:26
热学是以研究热运动的规律及其对物质宏观性质 的影响,以及与物质其他运动形态之间的转化规 律为任务的。所谓热运动即组成宏观物体的大量 微观粒子的一种永不停息的无规运动。 按照研究方法的不同,热学可分为两门学科,即 热力学和统计物理学。它们从不同角度研究热运 动,二者相辅相成,彼此联系又互相补充
文档格式:PDF 文档大小:324.21KB 文档页数:4
对唐钢烧结厂3.1 m×8.3 m热矿振动筛筛箱温度场现场实测.用SAP5p软件研究了热矿筛的热应力与静应力,做出了等效应力曲线,找到了筛箱最大热应力点,为以后热矿筛的设计和研究提供厂一些参考数据
文档格式:PPT 文档大小:1.38MB 文档页数:76
本质:能量转换及守恒定律在热过程中的应用 18世纪初,工业革命,热效率只有1% 1842年,JR. Mayer阐述热一律,但没有 引起重视 1840-1849年, Joule用多种实验的一致性 证明热一律,于1950年发表并得到公认 1909年,C. Caratheodory最后完善热一律
文档格式:PDF 文档大小:4.51MB 文档页数:7
锂离子电池在大功率应用下的热控制和热管理已成为制约电动汽车商业化的瓶颈,为解决此问题,运用微热管阵列设计锂电池模块散热系统,在开放条件下对电池模块进行恒流18 A(1 C)和36 A(2 C)充放电测试,通过测量布置微热管阵列前后电池表面温度可知:在1 C和2 C充放电倍率下,散热系统能够有效的降低电池模块的温度及电池间温度差异,将温度和温度差值分别控制在40℃与5℃之内,可以解决温度对电池寿命和容量的影响问题.基于实验数据,对其中一2 C工况热量进行了计算,得到通过微热管阵列的对流散热量达到模块生热量的40%
文档格式:DOC 文档大小:1.33MB 文档页数:16
一、板翅式换热器的发展 板翅式换热器首先使用于汽车与航空工业中,最早生产的 是铜墙质浸焊的板翅式换热器。本世纪四十年代中期出现了 更轻巧的铝质浸焊板翅式换热器,随后研究与使用了更多结 构形式的翅片,使得板翅式热热器趋于更加紧凑、轻巧
文档格式:PDF 文档大小:456.71KB 文档页数:5
为了提高瞬态平面热源法的适用温度,介绍了瞬态平面热源法的测量原理.根据有限元法模拟了无膜平面热源加热过程中试样的温度分布,建立了相应的实验装置,测量了环境温度为27~829℃时材料的导热系数和热扩散率.结果表明在较高温度下该方法测量材料热导率是有效的,可用于实际测量
首页上页2829303132333435下页末页
热门关键字
搜索一下,找到相关课件或文库资源 523 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有