◆8.0 Introduction ◆8.1 Representation of Periodic Sequence: the Discrete Fourier Series ◆8.2 Properties of the Discrete Fourier Series ◆8.3 The Fourier Transform of Periodic Signal ◆8.4 Sampling the Fourier Transform ◆8.5 Fourier Representation of Finite-Duration Sequence: the Discrete Fourier Transform ◆8.6 Properties of the Discrete Fourier Transform ◆8.7 Linear Convolution using the Discrete Fourier Transform ◆8.8 the discrete cosine transform (DCT)
2.0 Introduction 2.1 Discrete-Time Signals: Sequences 2.2 Discrete-Time Systems 2.3 Linear Time-Invariant (LTI) Systems 2.4 Properties of LTI Systems 2.5 Linear Constant-Coefficient Difference Equations 2.6 Frequency-Domain Representation of Discrete-Time Signals and systems 2.7 Representation of Sequences by Fourier Transforms 2.8 Symmetry Properties of the Fourier Transform 2.9 Fourier Transform Theorems 2.10 Discrete-Time Random Signals 2.11 Summary
◆7.0 Introduction ◆7.1 Design of Discrete-Time IIR Filters From Continuous-Time Filters ◆7.2 Design of FIR Filters by Windowing ◆7.3 Examples of FIR Filters Design by the Kaiser Window Method ◆7.4 Optimum Approximations of FIR Filters ◆7.5 Examples of FIR Equiripple Approximation ◆7.6 Comments on IIR and FIR Discrete-Time Filters
6.0 Introduction 6.1 Block Diagram Representation of Linear Constant-Coefficient Difference Equations 6.2 Signal Flow Graph Representation of Linear Constant-Coefficient Difference Equations 6.3 Basic Structures for IIR Systems 6.4 Transposed(转置) Forms 6.5 Basic Network Structures for FIR Systems
◆8.0 Introduction ◆8.1 Representation of Periodic Sequence: the Discrete Fourier Series (DFS) ◆8.2 Properties of the DFS ◆8.3 The Fourier Transform of Periodic Signal ◆8.4 Sampling the Fourier Transform(DTFT) ◆8.5 Fourier Representation of Finite-Duration Sequence: the Discrete Fourier Transform(DFT) ◆8.6 Properties of the DFT ◆8.7 Linear Convolution using the DFT ◆8.8 the discrete cosine transform (DCT)
◆8.0 Introduction ◆8.1 Representation of Periodic Sequence: the Discrete Fourier Series ◆8.2 Properties of the Discrete Fourier Series ◆8.3 The Fourier Transform of Periodic Signal ◆8.4 Sampling the Fourier Transform ◆8.5 Fourier Representation of Finite-Duration Sequence: the Discrete Fourier Transform ◆8.6 Properties of the Discrete Fourier Transform ◆8.7 Linear Convolution using the Discrete Fourier Transform ◆8.8 the discrete cosine transform (DCT)
◆Signal processing is benefited from a close coupling between theory, application, and technologies for implementing signal processing systems. ◆Signal processing deals with the representation, transformation, and manipulation of signals and the information they contain
◆8.0 Introduction ◆8.1 Representation of Periodic Sequence: the Discrete Fourier Series (DFS) ◆8.2 Properties of the DFS ◆8.3 The Fourier Transform of Periodic Signal ◆8.4 Sampling the Fourier Transform ◆8.5 Fourier Representation of Finite-Duration Sequence: the Discrete Fourier Transform(DFT) ◆8.6 Properties of the DFT ◆8.7 Linear Convolution using the DFT ◆8.8 the discrete cosine transform (DCT)