5.1 概述. 2 5.1.1 什么是分类.2 5.1.2 分类的一般步骤.3 5.2 Rocchio 方法. 4 5.3 k-近邻法. 5 5.4 决策树方法. 6 5.4.1 决策树的概念.6 5.4.2 属性选择度量.6 5.4.3 决策树的常用算法.10 5.5 贝叶斯方法. 11 5.5.1 贝叶斯原理.11 5.5.2 朴素贝叶斯分类.11 5.6 分类结果评估. 13 5.6.1 常用评估度量.13 5.6.2 文本分类的评估.14 5.7 自动分类的案例与软件操作. 15 5.7.1 决策树案例(SPSS Modeler) .15 5.7.2 决策树案例(R 语言).19