点击切换搜索课件文库搜索结果(49)
文档格式:PDF 文档大小:126.71KB 文档页数:19
Summary · Review: -Examined definitions of pseudorange and carrier phase Looked at some actual raw measurements from a RINEX file Today we look at:
文档格式:PDF 文档大小:122.64KB 文档页数:11
Basic concepts Basic problem: We measure range and phase data that are related to the positions of the ground receiver, satellites and other quantities How do we determine the \ best position for the receiver and other quantities What do we mean by best \ estimate?
文档格式:PDF 文档大小:182.04KB 文档页数:10
Specific common processes White-noise: Autocorrelation is Dirac-delta function; PSD is flat; integral of power under PSD is variance of process(true in general) First-order Gauss-Markov process (one of most models common in Kalman filtering)
文档格式:PDF 文档大小:153.61KB 文档页数:13
Basic atmospheric structure mosphere Troposphere is 2 100 where the temperature stops decreasing in the tmosphere(10 km altitude)
文档格式:PDF 文档大小:875.31KB 文档页数:15
Basic antenna operation Receiving and transmitting antennas are identical: Time just flows in opposite directions. Antenna problems are solved knowing the current distribution J(x') in the antenna and using a vector potential
文档格式:PDF 文档大小:100.14KB 文档页数:13
Estimation · Summary Examine correlations -Process noise · White noise · Random walk First-order Gauss Markov Processes Kalman filters Estimation in which the parameters to be estimated are changing with time
文档格式:DOC 文档大小:25KB 文档页数:1
石河子大学:《遥感导论》课程教学资源(习题解答)第八章 遥感、地理信息系统与全球定位系统综合应用答案
文档格式:DOC 文档大小:23.5KB 文档页数:1
石河子大学:《遥感导论》课程教学资源(习题解答)第八章 遥感、地理信息系统与全球定位系统综合应用
文档格式:PDF 文档大小:95.83KB 文档页数:9
Class expectations This is a graduate level class. There is no final exam Grading in the class is based on homework (75%) and on a final written report(25%) The report will be revised during semester and should be 2000-3000 words(8-10 double spaced pages)
文档格式:PDF 文档大小:184.85KB 文档页数:10
Statistical approach to estimation Examine the multivariate Gaussian distribution: (x-)\v-(x-) Multivariant f(x)= Minimize (x-u)'v(x-u) gives largest probability density By minimizing the argument of the exponential in the probability density function, we maximize the likelihood of the estimates(MLE)
上页12345下页
热门关键字
搜索一下,找到相关课件或文库资源 49 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有