点击切换搜索课件文库搜索结果(503)
文档格式:PDF 文档大小:92.42KB 文档页数:6
In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we shall make is that the velocity changes of the spacecraft, due to the propulsive effects, occur instantaneously. Although it obviously takes some time for the spacecraft to accelerate to the velocity of the new orbit, this assumption is reasonable when the burn time of the rocket is much smaller than the period of the orbit. In such cases, the Av required to do the maneuver is simply the difference between the
文档格式:PDF 文档大小:1.08MB 文档页数:6
D244BD RIGID BODY DYNAMICS KINETIC EWEGY In echure we derwed am kinenc a susem u dm T= Fere ts the velouty relanve to G. for a nald body we ca wate Uing the vechor nidontklyAxB=Ax
文档格式:PDF 文档大小:1.22MB 文档页数:11
In this lecture, we will derive expressions for the angular momentum and kinetic energy of a 3D rigid body. We shall see that this introduces the concept of the Inertia Tensor. Angular Momentum We start form the expression of the angular momentum of a system of particles about the center of mass
文档格式:PDF 文档大小:3.39MB 文档页数:43
 一、非互斥项目相关概念  二、互斥组合法  三、线性规划法  四、净现值率法  五、电子表格的运用  (一)互斥组合法  (二)整数规划法  (三)净现值率法
文档格式:PDF 文档大小:109.02KB 文档页数:7
A pendulum is a rigid body suspended from a fixed point (hinge) which is offset with respect to the body's center of mass. If all the mass is assumed to be concentrated at a point, we obtain the idealized simple pendulum. Pendulums have played an important role in the history of dynamics. Galileo identified the pendulum as the first example of synchronous motion, which led to the first successful clock developed
文档格式:PDF 文档大小:1.08MB 文档页数:48
• 一、公共项目及其经济分析的特点 • 二、从财务分析到经济分析 • 三、费用-效益分析 • 四、费用-效果分析 • 五、公用设施项目分析 • 六、公共项目的民间参与
文档格式:PDF 文档大小:719.38KB 文档页数:61
第一节 设备更新概述 第二节 设备大修理的经济分析 第三节 设备更新的经济分析 第四节 设备租赁分析 第六节 改扩建和技术改造项目的财务评价
文档格式:PDF 文档大小:177.06KB 文档页数:6
In this lecture, we consider the motion of a 3D rigid body. We shall see that in the general three dimensional case, the angular velocity of the body can change in magnitude as well as in direction, and, as a consequence, the motion is considerably more complicated than that in two dimensions. Rotation About a Fixed Point We consider first the simplified situation in which the 3D body moves in such a way that there is always a point, O, which is fixed. It is clear that, in this case, the path of any point in the rigid body which is at a
文档格式:PDF 文档大小:122.28KB 文档页数:8
In this lecture, we will particularize the conservation principles presented in the previous lecture to the case in which the system of particles considered is a 2D rigid body. Mass Moment of Inertia In the previous lecture, we established that the angular momentum of a system of particles relative to the center of mass, G, was
文档格式:PDF 文档大小:99.43KB 文档页数:5
In lecture D9, we saw the principle of impulse and momentum applied to particle motion. This principle was of particular importance when the applied forces were functions of time and when interactions between particles occurred over very short times, such as with impact forces. In this lecture, we extend these principles to two dimensional rigid body dynamics. Impulse and Momentum Equations Linear Momentum In lecture D18, we introduced the equations of motion for a two dimensional rigid body. The linear momen- tum for a system of particles is defined
首页上页3738394041424344下页末页
热门关键字
搜索一下,找到相关课件或文库资源 503 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有