点击切换搜索课件文库搜索结果(588)
文档格式:PDF 文档大小:158.83KB 文档页数:12
In the previous lecture, we related the motion experienced by two observers in relative translational motion with respect to each other. In this lecture we will extend this relation to our third type of observer.That is, observers who accelerate and rotate with respect to each other. As a matter of illustration, let us consider a very simple situation, in which a particle at rest with respect
文档格式:PDF 文档大小:86.82KB 文档页数:6
In the previous lectures we have described particle motion as it would be seen by an observer standing still at a fixed origin. This type of motion is called absolute motion. In many situations of practical interest, we find ourselves forced to describe the motion of bodies while we are simultaneously moving with respect to a more basic reference. There are many examples were such situations occur. The absolute motion of a passenger inside an aircraft is best
文档格式:PDF 文档大小:80.81KB 文档页数:5
So far we have used Newton's second law= ma to establish the instantaneous relation between the sum of the forces acting on a particle and the acceleration of that particle. Once the acceleration is known,the velocity (or position) is obtained by integrating the expression of the acceleration (or velocity). There are two situations in which the cumulative effects of unbalanced forces acting on a particle are of interest to us. These involve:
文档格式:PDF 文档大小:103.33KB 文档页数:8
In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel set of equations that relate the angular impulse and momentum. Angular Momentum We consider a particle of mass, m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the \moment\ of the particle's linear
文档格式:PDF 文档大小:80.64KB 文档页数:5
In this lecture we will consider the equations that result from integrating Newtons second law, F=ma, in time. This will lead to the principle of linear impulse and momentum. This principle is very useful when solving problems in which we are interested in determining the global effect of a force acting on a particle over a time interval Linear momentum We consider the curvilinear motion of a particle of mass, m, under the influence of a force F. Assuming that
文档格式:PDF 文档大小:82.46KB 文档页数:5
We have seen that the work done by a force F on a particle is given by dw =. dr. If the work done by F, when the particle moves from any position TI to any position T2, can be expressed as, W12=fdr=-(V(r2)-V(1)=V-v2, (1) then we say that the force is conservative. In the above expression, the scalar
文档格式:PDF 文档大小:85.64KB 文档页数:5
In this lecture we will look at some applications of Newton's second law, expressed in the different coordinate systems that were introduced in lectures D3-D5. Recall that Newton's second law F=ma, (1) is a vector equation which is valid for inertial observers. In general, we will be interested in determining the motion of a particle given
文档格式:PDF 文档大小:1.07MB 文档页数:36
支付已知现金收益资产远期合约的定价 无收益资产远期合约的定价 远期价格与期货价格 远期(期货)价格与标的资产现货价格的关系 支付已知收益率资产远期合约的定价 远期与期货价格的一般结论
文档格式:PDF 文档大小:107.72KB 文档页数:8
In lecture D2 we introduced the position velocity and acceleration vectors and referred them to a fixed cartesian coordinate system. While it is clear that the choice of coordinate system does not affect the final answer, we shall see that, in practical problems, the choice of a specific system may simplify the calculations considerably. In previous lectures, all the vectors at all points in the trajectory were expressed in the
文档格式:PDF 文档大小:112.27KB 文档页数:8
In this lecture we will look at some other common systems of coordinates. We will present polar coordinates in two dimensions and cylindrical and spherical coordinates in three dimensions. We shall see that these systems are particularly useful for certain classes of problems Like in the case of intrinsic coordinates presented in the previous lecture, the reference frame changes from point to point. However, for the coordinate systems to be presented below, the reference frame depends only on the position of the particle. This is in contrast with the intrinsic coordinates, where the reference frame is a function of the position, as well as the path
首页上页4243444546474849下页末页
热门关键字
搜索一下,找到相关课件或文库资源 588 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有