点击切换搜索课件文库搜索结果(71)
文档格式:DOC 文档大小:192KB 文档页数:3
第六章6-2欧氏空间中特殊的线性变换 1.正交变换 设V是n维欧氏空间,A是V内一个线性变换如果对任意a,B∈V都有 (Aa, AB)=(a,B) 则称A是V内的一个正交变换 正交变换的四个等价表述 命题2.1A是n维欧氏空间V内的一个线性变换,则下列命题等价
文档格式:DOC 文档大小:98KB 文档页数:3
设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义
文档格式:DOC 文档大小:98KB 文档页数:3
6-1欧几里得空间 设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义
文档格式:DOC 文档大小:127.5KB 文档页数:2
设A是n维欧氏空间V内的一个线性变换,如果对a,∈V,都有 (Aa,)=(a, AB) 则称A是V内的对称变换 命题n维欧氏空间V上的线性变换A是对称变换当且仅当它在标准正交基 ,2n下的矩阵A是实对称矩阵
文档格式:DOC 文档大小:192KB 文档页数:3
1.正交变换 设V是n维欧氏空间,A是V内一个线性变换.如果对任意a,B∈V都有
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.VV上的一个函数(,·),如果满足: (i)(,)对第一个变量是线性的; (ii)(a,)=(B,a); (iii)a∈v,(a,a)≥0,且(a,a)=0a=0
文档格式:DOC 文档大小:75KB 文档页数:1
命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质: 1)E=E 2)(A)=A 3)(kA)*=kA 4)(A+B)=a+B 5)(AB)'=B'A' 如果A=A,则称A是一个厄米特变换
文档格式:PDF 文档大小:102KB 文档页数:9
一、重积分的概念 1.证明性质(4),性质(6) 2.证明有界闭区域上的连续函数必可积 3.设Ω是可度量的平面图形或空间立体,f,g在g上连续,证明
上页12345678下页
热门关键字
搜索一下,找到相关课件或文库资源 71 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有