In this course we will study Classical Mechanics. Particle motion in Classical Mechanics is governed by Newton's laws and is sometimes referred to as Newtonian Mechanics. These laws are empirical in that they combine observations from nature and some intuitive concepts. Newton's laws of motion are not self evident. For instance, in Aristotelian mechanics before Newton, force was thought to be required in order
is a vector equation that relates the magnitude and direction of the force vector, to the magnitude and direction of the acceleration vector. In the previous lecture we derived expressions for the acceleration vector expressed in cartesian coordinates. This expressions can now be used in Newton's second law, to produce the equations of motion expressed in cartesian coordinates
In lecture D2 we introduced the position velocity and acceleration vectors and referred them to a fixed cartesian coordinate system. While it is clear that the choice of coordinate system does not affect the final answer, we shall see that, in practical problems, the choice of a specific system may simplify the calculations considerably. In previous lectures, all the vectors at all points in the trajectory were expressed in the
In this lecture we will look at some applications of Newton's second law, expressed in the different coordinate systems that were introduced in lectures D3-D5. Recall that Newton's second law F=ma, (1) is a vector equation which is valid for inertial observers. In general, we will be interested in determining the motion of a particle given
In this lecture we will look at some other common systems of coordinates. We will present polar coordinates in two dimensions and cylindrical and spherical coordinates in three dimensions. We shall see that these systems are particularly useful for certain classes of problems Like in the case of intrinsic coordinates presented in the previous lecture, the reference frame changes from point to point. However, for the coordinate systems to be presented below, the reference frame depends only on the position of the particle. This is in contrast with the intrinsic coordinates, where the reference frame is a function of the position, as well as the path
We will start by studying the motion of a particle. We think of particle as a body which has mass, but has negligible dimensions. Treating bodies as particles is, of course, an idealization which involves an approximation. This approximation may be perfectly acceptable in some situations and not adequate in some other cases. For instance, if we want to study the motion of planets it is common to consider each planet as a particle