点击切换搜索课件文库搜索结果(776)
文档格式:PPT 文档大小:219.5KB 文档页数:8
问题:由导数定义求函数导数,繁!下面推出导数的运算法则,利用简单函数的导数便可求出任何初等函数在其定义域内的导数
文档格式:PPT 文档大小:406KB 文档页数:11
一、反函数的求导法则 定理4.设函数y=f(x)在x的某领域内连续且严格单 调,y=f(x)在x处可导,且f(x)≠0.则y=f(x)的反 函数x=(y)在y处可导且
文档格式:PPT 文档大小:804KB 文档页数:29
在现代经济管理中,有许多最优化问题属于多元函数的极值和最值问题同一元函数类似,其最值也与其极值有十分密切的联系;故以下以二元函数为例用多元函 数微分法先来讨论多元函数的极值,再讨论多元函数的最值
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PPT 文档大小:752KB 文档页数:18
4.2罗必达(L'Hospital)法则 在第二章中我们已经知道,0型的极限可能存在,也可能不存在。 例:求1.lim=1→则原式极限存在
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时,均有limf(x,y)dxdy=1
文档格式:PPT 文档大小:189KB 文档页数:6
由第一章知:显函数y=f(x),也可写成F(x,y =y-f(x)=0.由方程F(x,y)=0确定的隐函数可能 有两种情形:y是x的函数y=f(x)或x是y的函 数x=(y);但并非所有隐函数都可化为一个显函 数.如y-esy+x2y2=0. 因而有必要研究隐函数的求导方法,下面通过几个例 子来介绍
文档格式:PPT 文档大小:891KB 文档页数:18
在研究一元函数时,已经看到了函数关于自变量的变化率(导数)的重要性.对于二元函数也同样有一个处于重要地位的函数变化率问题.因二元函数有两个自变量, 且这两个自变量是彼此无关的,故可考虑函数关于其中 的一个自变量的变化率,此时将另一个自变量看作不变这种变化率称之为偏导数
文档格式:PPT 文档大小:1.12MB 文档页数:32
定积分的应用极其广泛,以下仅介绍它在几何与经 济上的应用;并希望同学们通过本章的学习能熟练地的 运用元素法将一个量表达成为定积分的分析方法微元法
文档格式:PPT 文档大小:1.25MB 文档页数:45
利用直接积分法求出的不定积分是很有限的.为了求出更多函数的不定积分,下面建立一些有效地积分法. 一、凑微分法
首页上页5556575859606162下页末页
热门关键字
搜索一下,找到相关课件或文库资源 776 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有