点击切换搜索课件文库搜索结果(12456)
文档格式:PDF 文档大小:1.13MB 文档页数:30
因子分析( Factor Analysis)是多元统讣分析技术的一个分支,其主要目的 是浓缩数据。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本 结构,并用少数几个假想变量来表示基本的数据结构。这些假想变量能够反映原 来众多的观测变量所代表的主要信息,并解释这些观测变量之间的相互依存关 系,我们把这些假想变量称之为基础变量,即因子( Factors)。因子分析就是研 究如何以最少的信息丢失把众多的观测变量浓缩为少数几个因子 因子分析是由心理学家发展起来的,最初心理学家借助因子分析模型来解释 人类的行为和能力,1904年查尔斯·斯皮尔曼( Charles spearman)在美国心理学 杂志上发表了第一篇有关因子分析的文章,在以后的三四十年里,因子分析的理 论和数学基础逐步得到了发展和完善,它作为一个一般的统计分析工具逐渐被人 们所认识和接受
文档格式:DOC 文档大小:26KB 文档页数:2
AMCM91问题A估计水塔的水流量 美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量,但许多 社区并没有测量流人或流出当地水塔的水量的设备,他们只能代之以每小时测量水塔中的水位,其精度在 0.5%以内。更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向 水塔重新充水直至某一最高水位只,但也无法得到水泵的供水量的测量数据。因此,在水泵正在工作时, 人们不容易建立水塔中的水位与水泵工作时的用水量之间的关系
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
文档格式:DOC 文档大小:197.5KB 文档页数:2
第四章4-4特征值与特征向量(续) 4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组 5+52++=0,j0,1,t-1 其中入的方幂组成的矩阵为
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性 函数。 命题f为对称双线性函数,当且仅当f在任意一组基下的矩阵为对称矩阵,当且仅 当f在某一组基下的矩阵为对称矩阵。 证明任取V的一组基1,2,…,n,任取a,B∈V,设它们在此组基下的坐标所构成 的列向量分别为X和Y,f在此组基下的矩阵记为A,若f为对称双线性函数,则由定
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量 ( a:a 显然Aa=a=a'a'=a'a'a==a'aa=aa=aa=1从而 入|=1 推论正交矩阵的特征值只能是±1 命题设A是n维欧氏空间V上的正交变换,若A的特征多项式有一个根=e
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章元多项式环 9-1一元多项式环的基本理论 911域上的一元多项式环的定义 定义91设K是一个数域,x是一个不定元。下面的形式表达式 f(x) (其中an3a1,a2属于K,且仅有有限个不是0)称为数域K上的一个不定元x的一元多 式。数域K上一个不定元x的多项式的全体记作K[x] 下面定义K[x]内加法、乘法如下 加法设
文档格式:DOC 文档大小:140KB 文档页数:3
第五章5-3实与复二次型的分类 1.复、实二次型的规范形 定理复数域上的任一二次型f在可逆变数替换下都可化为规范形 zi+…+z, 其中r是f的秩.复二次型的规范形是唯一的. 证明复数域C上给定二次型) f=, x,x, ( =ai 设它在可逆线性变数替换X=TZ下变为标准型 d1z2+d2z2+…an 这相当于在C上n维线性空间V内做一个基变换 (n2n)=(1,2EnT 使对称双线性函数f(a,B)在新基下的矩阵成对角形
文档格式:DOC 文档大小:287.5KB 文档页数:4
第三章3-1,3-2n阶方阵的行列式 3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
首页上页580581582583584585586587下页末页
热门关键字
搜索一下,找到相关课件或文库资源 12456 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有