Problem set 2 Solutions Due: Monday, February 14 at 9 PM Problem 1. Use induction to prove that n/n for alln olution. The proof is by induction on n. Let P(n) be the proposition that the equation Base case. P(2 )is true because Inductive step. Assume P(n)is true. Then we can prove P(n +1)is also true as follows
Guessing a particular solution. Recall that a general linear recurrence has the form: f(n)=a1f(n-1)+a2f(n-2)+…+aaf(n-d)+g(n) As explained in lecture, one step in solving this recurrence is finding a particular solu- tion; i.e., a function f(n)that satisfies the recurrence, but may not be consistent with the boundary conditions. Here's a recipe to help you guess a particular solution:
1 Strong Induction Recall the principle of strong induction: Principle of Strong Induction. Let(n) be a predicate. If ·P() is true,and for all n, P(O)A P(1)...A P(n) implies P(n+1), then P() is true for all n E N. As an example, let's derive the fundamental theorem of arithmetic