点击切换搜索课件文库搜索结果(1186)
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
文档格式:DOC 文档大小:214.5KB 文档页数:2
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.5 商空间上诱导的线性变换 4.5.1 线性变换在(关于不变子空间的)商空间上的诱导变换的定义
文档格式:DOC 文档大小:98KB 文档页数:3
第六章带度量的线性空间 6-1欧几里得空间 设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义 lalv(a,a) 为向量a的长度或模.|a|=1时,称a为单位向量 命题1.1(柯西-布尼雅可夫斯基不等式)对欧氏空间V内任意两个向量a,,有
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式 12 2 为方阵的顺序主子式。 定理设f是实二次型,则下述四条等价:
文档格式:DOC 文档大小:232.5KB 文档页数:2
第四章4-3线性映射与线性变换 4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件: i)、(a+)=(a)+(),(a,B∈U); i)、(ka)=k(a),(a∈U,k∈K), 则称为(由U到V的)线性映射, 由数域K上的线性空间U到V的K的线性映射的全体记为Hom(U,V),或简记为 Hom(U,). 定义中的i和)二条件可用下述一条代替 (ka+1)=k(a)+kq(B),(a,B∈U,k,l∈K)
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包 含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用 小块矩阵表示如下: A1A12… A=4424
文档格式:DOC 文档大小:285KB 文档页数:5
第二章3线性方程组的理论课题 3.1.1齐次线性方程组的基础解系 对于齐次线性方程组 ax1+a12x2+…+anxn=0 Ja12x1+a22x2++ =0, ……… amx+am2x2+…+=0 令 (a1)(a1 a22 a1= a2,a2= ,…,an= am2/ amn 则上述方程组即为
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:232KB 文档页数:3
第二章4矩阵的运算 2.4.1矩阵运算的定义 定义(矩阵的加法和数乘)给定两个mn矩阵 [a1a12an [b1b12…b A= a21 a22 a2n B= b21b22…b2 : : Lamt am22a bmbm2b A和B加法定义为
文档格式:DOC 文档大小:154KB 文档页数:3
第二章向量空间与矩阵 第一节m维向量空间 2.1.1向量和m维向量空间的定义及性质
首页上页5859606162636465下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1186 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有