点击切换搜索课件文库搜索结果(6721)
文档格式:PDF 文档大小:25.49KB 文档页数:5
Handout 20: Phase Plane analysis: Introduction Eric Feron April 28, 2004 State space equations of second-order systems
文档格式:PDF 文档大小:25.67KB 文档页数:4
Handout 19: More about Dual-input describing functions- Limit cycle stability analysis Eric Feron April 16, 2004 Dual-input describing functions for Toggle switch Another servo-motor application
文档格式:PDF 文档大小:25.35KB 文档页数:4
Handout 18: Dual-input describing functions Eric Feron April 5,2004 Dual-input describing functions are for mixed signals(sinusoid small constant signal) Approximating non-constant signals with constant ones
文档格式:PDF 文档大小:42.18KB 文档页数:4
Handout 13: More about plants with right half-plane zeros Eric Feron March 15, 2004 Right half-plane zeros and sensor/actuator design Influence of sensor position on system dynamics: Star Market
文档格式:PDF 文档大小:156.55KB 文档页数:2
Handout 10: Notch compensation Eric Feron March 8, 2004 Notch Compensation goals: Kill nasty frequencies (eg resonant fre- quencies). Canonical Notch element:
文档格式:PDF 文档大小:290.42KB 文档页数:13
Handout 8: Lead compensation Eric Feron March 3, 2004 Lead Compensation goals: Raise phase (and gain) at high frequen- cies while not touching low-frequency system's characteristics: Can extend bandwidth of system Canonical lead element:
文档格式:PDF 文档大小:206.83KB 文档页数:7
Handout 7: Lag and PI compensation Eric Feron Lag Compensation goals: Raise gain at low frequencies while leaving rossover &z higher frequencies untouched b≥0. When b=0: Add an integrator in the loop Typical lag Bode Plot
文档格式:PDF 文档大小:75.08KB 文档页数:4
Handout 4: Root-Locus Review Eric Feron Feb17,2004 Summary of Guidelines for plotting a root-locus 1. Mark Poles X and Zeros O 2. Draw the locus on the real axis to the left of an odd number of real poles plus zeros
文档格式:PDF 文档大小:209.15KB 文档页数:4
Handout 6: Proportional Compensation Eric Feron Feb25,2004 Plant under study: 1/10 G(s)=(s+1)(s/10+1)2 Compensation Scheme: We adjust the gain K in the feedback loop (draw the feedback loop below)
文档格式:PDF 文档大小:64.75KB 文档页数:8
Handout 2: Gain and Phase margins Eric Feron Feb6,2004 Nyquist plots and Cauchy's principle Let H(s) be a transfer function. eg H(s)= s2+s+1 (s+1)(s+3) Evaluate H on a contour in the s-plane. (your plots here)
首页上页629630631632633634635636下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6721 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有