点击切换搜索课件文库搜索结果(6651)
文档格式:PDF 文档大小:800.53KB 文档页数:12
无人机遥感技术是融合无人机、遥感传感器、差分定位、通信等技术以实现地理环境信息快速采集处理与应用分析的新兴技术。本文介绍了无人机遥感平台构成、技术现状及工作流程,并通过大量国内外文献调研系统梳理其在矿业领域应用场景与实际案例,结合当前技术供给短板分析发展态势。研究表明:(1)无人机遥感技术具备成本低廉、机动性强、数据采集灵活、时效性强、可重复、高分辨率等无可比拟的优势;(2)当前矿业领域主要应用于露天矿生产管理、尾矿库安全监测、灾害应急救援、矿区环境监测、边坡灾害防治;(3)规范监管、简化操控方式、提升续航时间、改善成果精度、拓展应用场景是技术应用发展趋势。无人机遥感技术在矿业领域具备广阔应用前景,势必成为智慧矿山建设中不可缺少的重要组成部分
文档格式:PDF 文档大小:802.75KB 文档页数:9
随着我国隧道工程建设的快速发展,由隧道病害引发的隧道质量和安全问题越发常见.通过地质雷达探测隧道病害对于减少隧道质量和安全问题具有十分重要的意义,为了提高病害探测的效率及可靠性,基于雷达反射波信号多维度分析,提出一种隧道病害智能辨识的新方法.根据反射波信号时域、频域及时频域分析结果提取病害信号辨识的6个典型特征,利用支持向量机算法对典型特征的训练构建病害信号的二分类模型,实现了病害水平分布范围的自动辨识;再依据病害信号的第一本征模态函数分量振幅包络计算病害深度分布范围,最终实现隧道病害的智能辨识.结合某隧道回填层雷达实测数据对智能辨识算法的性能进行评价,与人工辨识结果的对比表明,该智能算法对于病害的辨识能力较强,病害的识别率高达100%,但辨识结果中同时存在少量误判,准确率达78.6%,满足工程应用的需求.该算法可用于隧道工程各类地质雷达探测数据中病害的智能辨识,而对于其他领域的地质雷达探测数据,本文研究成果亦可为不同类型探测目标智能辨识算法的设计提供可行思路
文档格式:PDF 文档大小:3.46MB 文档页数:8
为解决堆浸过程中由于大量矿粉存在而导致矿堆渗透性差、浸出率低等问题,以次生硫化铜矿为原料,开展了制粒试验研究.考察了不同制粒黏结剂对矿粉的黏结效果,确定了最佳的制粒黏结剂、制粒工艺以及制粒方法.通过正交制粒试验,明确了影响制粒试验的主要因素.试验结果表明:不同制粒黏结剂的黏结效果排序依次为:SFS-2 > SFS-3 >水泥>半水石膏> SFS-1 > SFS-0 >硅酸钠>阳离子型聚丙烯酰胺.当选用黏结剂SFS-2,黏结剂占矿粉质量分数为8%、加酸量为25 kg·t-1以及制粒过程喷水质量分数为30%时,所制矿团效果最佳.其湿强度达到94.62%,抗压强度达到417.44 N,矿团酸浸维持完好时间超过25 d,矿团形态基本维持不变,无明显破裂现象.正交制粒试验得到多因素对次生硫化铜矿制粒的影响由大到小依次为:黏结剂占矿石质量分数、加酸量和制粒喷水量.对选定的黏结剂进行细菌接种试验显示,黏结剂对细菌群落无明显影响.添加黏结剂试验组细菌数量为8.79×107 mL-1,未添加黏结剂试验组细菌数量为8.86×107 mL-1.对制粒后矿团进行浸矿试验结果显示,矿粉制粒后铜浸出率提高了12.74%,制粒通过增大矿物之间的孔隙,增加浸出液与矿石的接触,进而提高铜浸出率
文档格式:PDF 文档大小:7.34MB 文档页数:10
分析提出了连铸流动与凝固耦合数值模拟中, 钢液在两相区流动时的糊状区系数(Amush)与渗透率的关系; 通过建立大方坯连铸结晶器三维耦合数值模型, 揭示了不同糊状区系数对钢液流动、传热与凝固进程的影响, 以及早期相关研究结果差异的源头.结果表明: 糊状区系数越大, 钢液在糊状区内的流动阻力越强, 凝固时钢液流动速度降低越快.采用较大的糊状区系数时, 糊状区呈较窄的\带状\分布在固液相之间; 当糊状区系数较小时, 糊状区范围变大, 钢液在结晶器内温降过快, 自由液面处出现过冷现象, 凝固坯壳局部发生重熔.结合实验数据验证与模型分析, 认为糊状区系数取值1×108~5×108 kg·m-3·s-1可以较可靠地揭示连铸结晶器内的实际凝固现象
文档格式:PDF 文档大小:3.14MB 文档页数:7
为减少制备硅酸钙板对矿物原浆资源的损耗和提高对固体废弃物的协同利用效果, 试验以电石渣-煤基固废胶凝体系为原料来研制高强度的纯固废硅酸钙板, 并通过热重-差示扫描量热法、X射线衍射测试来分析硅酸钙板中生成的主要矿物成分及不同配比对硅酸钙板的强度变化关系.研究表明: 在水灰比为0.3的条件下, 使用电石渣完全替代水泥, 将粉煤灰和硅灰按1:1的质量比互掺调制所得的混合胶凝体系最终制得托贝莫来石型纯固废硅酸钙样板.在硅灰占原料的质量分数为0~10%范围内, 样板抗折强度随硅灰添量增加而升高, 硅灰添量为10%时样板达到最大抗折强度, 不同粒径的原料颗粒相互填充, 板内晶体与水化胶凝体相互咬合, 最终使得样板力学性能得到大幅提升; 样板的抗折强度随着NaOH添量的增加呈现先增后降的趋势, NaOH添加质量分数为4%时样板板面平滑, 强度达到最大值11.8 MPa, 该添量为NaOH的最佳添量, 通过扫描电镜分析发现加入4% NaOH时对该胶凝体系的水化反应起到最佳激发作用, 且样板料坯的微观结构对其最终的力学性能有重要影响, 但不起决定性作用, 其中决定其最终强度的是板坯内水化胶凝体的数量、形态以及其相互间的联结方式
文档格式:PDF 文档大小:4.32MB 文档页数:7
搭接是纤维增强复合材料(FRP)的重要连接方式,长期性能是该技术实际工程应用的关键.对不同恒定应力和湿度状态下混杂FRP (HFRP)双搭接接头的剪切蠕变性能进行了试验研究.试验观测到了明显的蠕变变形,测定了蠕变与恒定应力及湿度的关系.进一步采用分数阶导数流变模型对试件的蠕变进行模拟.根据模型所包含的Mittag-Leffler函数的性质采用了改进的Powell优化算法,并确定了合理的初值,结合试验曲线拟合得到模型各参数值.根据搭接接头蠕变的特点,在经典分数阶流变模型中引入了表征应力水平对搭接接头非线性蠕变特性影响的函数,提出了一种改进的分数阶蠕变柔量计算公式.研究结果表明,该流变模型能够采用简单的表达形式和较少的参数对试件的非线性蠕变行为进行拟合,在30%~70%恒定应力范围内准确模拟了双剪搭接接头的蠕变曲线
文档格式:PDF 文档大小:726.07KB 文档页数:7
采用伪半固态触变成形工艺制备了40%、56%和63%三种不同SiC体积分数颗粒增强Al基电子封装材料,并借助光学显微镜和扫描电镜分析了材料中Al和SiC的形态分布及其断口形貌,测定了材料的密度、致密度、热导率、热膨胀系数、抗压强度和抗弯强度.结果表明,通过伪半固态触变成形工艺可制备出的不同SiC体积分数Al基电子封装材料,其致密度高,热膨胀系数可控,材料中Al基体相互连接构成网状,SiC颗粒均匀镶嵌分布于Al基体中.随着SiC颗粒体积分数的增加,电子封装材料密度和室温下的热导率稍有增加,热膨胀系数逐渐减小,室温下的抗压强度和抗弯强度逐渐增加.SiC/Al电子封装材料的断裂方式为SiC的脆性断裂,同时伴随着Al基体的韧性断裂
文档格式:PDF 文档大小:1.4MB 文档页数:7
利用Gleeble-3500热模拟试验机、扫描电镜、透射电镜、电子背散射衍射技术等手段研究V对700 MPa级高强度汽车大梁钢组织细化的影响.在冷却速度2~7℃·s-1时,显微组织为针状铁素体+粒状贝氏体组织.V添加提高粒状贝氏体体积分数,细化粒状贝氏体组织,并明显降低粒状贝氏体中M/A岛的尺寸.与无V钢相比,含V钢中大角度晶界比例提高18.2%,对提高钢的韧性有利.由于C含量过低,在实验钢中未观察到单独的VC析出,由此推测V主要固溶在基体中,以合金化方式促进钢的贝氏体相变,使组织得到有效细化
文档格式:PDF 文档大小:522.86KB 文档页数:8
采用透析的方法将铜电解液中相对分子质量大于3500的明胶进行分离,以二喹啉甲酸(BCA)法测定所得明胶质量浓度,研究了硫酸质量浓度和温度对铜电解液中明胶分解规律的影响.铜电解液中Cu2+基本不影响明胶的稳定性;电解液温度升高和硫酸质量浓度增大,都加剧了明胶的分解.在相同温度下,硫酸质量浓度在150~180 g·L-1范围内每增加15 g·L-1,明胶分解反应速率常数增大约1.2倍;而在相同的硫酸质量浓度下,温度在55~70℃范围内每增加5℃,明胶分解反应速率常数增大约1.5倍.对于铜电解生产,电解液中硫酸质量浓度150~180 g·L-1以及温度60~65℃,可推算出电解液在电解槽中停留3~4 h,明胶的分解率达50%~80%;电解液经过完整的一周循环约需6 h,明胶的分解率可达到70%~90%
文档格式:PDF 文档大小:929.07KB 文档页数:8
为了减轻铸件顶部缩孔缺陷以降低冒头切除率提高铸锭成材率,基于ProCAST软件建立了铁镍合金真空下凝固数值仿真模型,通过解剖实验验证了模拟参数正确性,进而研究锭模参数对铁镍合金缩孔缩松分布的影响并得到最优锭型.研究表明:数值模拟中,关于真空条件下传热参数的设置较为合理,能较准确地模拟得到与实际生产一致的缩孔缺陷;在本研究条件下,冒口锥度对缩孔高度方向上位置的影响远大于锭身锥度和高径比对其的影响,缩孔位置随冒口锥度减小上移,中心疏松程度随锭身锥度增加而减弱,高径比对缩孔缩松影响不大;优化后的锭型能有效改善缩孔缺陷,将缩孔控制在冒口线以上提高铸锭成材率
首页上页642643644645646647648649下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6651 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有