点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:209KB 文档页数:3
9-4单变量有理函数域 9.4.1域上的一元有理分式域的定义 设R为一整环,命S={(b,a)|a,b∈R,a≠0}。现在S中规定为 逐一验证“反身性”、“对称性”、“传递性”可知为一等价关系。用(b,a)表示与 (ba)等价的元素的全体。现记S关于u的等价类的集合为%,则(b,a)是中的元 素。下面在上定义二元运算:
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下: 1、反身性:a=a(modm) 2、对称性:若b=a(modm),则a=b(modm) 3、转递性:若a=b(modm),b=c(modm),则
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用小块矩阵表示如下:
文档格式:DOC 文档大小:208KB 文档页数:4
第四章线性空间与线性变换 1线性空间的基本概念 4.1.1线性空间的定义及例 1、线性空间的定义 定义4.1线性空间 设V是一个非空集合,且V上有一个二元运算“+”(V×V→V),又设K为数 域,V中的元素与K中的元素有运算数量乘法“·”(K×V→V),且“+”与“·”满足如下性质: 1、加法交换律a,B∈V,有a+B=B+a; 2、加法结合律a,B,y∈V,有(a+B)+y=a+(B+y)
文档格式:DOC 文档大小:188.5KB 文档页数:4
4.1.4线性空间的基变换,基的过渡矩阵 设VK是n维线性空间,设1,E2,…n和2,…,n是两组基,且
文档格式:PPT 文档大小:818.5KB 文档页数:29
一、不变子空间的概念 二、线性变换在不变子空间上的限制 三、不变子空间与线性变换的矩阵化简 四、线性空间的直和分解
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.4子空间的直和与直和的四个等价定义 定义设V是数域K上的线性空间,2…,是V的有限为子空间。若对于∑中任一向量,表达式a=a1+a2+…+am,a1e,i=12,m是唯一的,则称∑V为直和,记为
文档格式:DOC 文档大小:232.5KB 文档页数:2
4.3.1线性映射的定义 定义设U,V为数域K上的线性空间,φ:U→V为映射,且满足以下两个条件:
文档格式:DOC 文档大小:143.5KB 文档页数:2
4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换
首页上页7071727374757677下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有