第十二章 数项级数 1 级数的收敛性 2 正项级数 一 正项级数收敛性的一般判别原则 二 比式判别法和根式判别法 三 积分判别法 四 拉贝判别法 3 一般项级数 一 交错级数 二 绝对收敛级数及其性质 三 阿贝耳判别法和狄利克雷判别法 第十三章 函数列与函数项级数 1 一致收敛性 一 函数列及其一致收敛性 二 函数项级数及其一致收敛性 三 函数项级数的一致收敛性判别法 2 一致收敛函数列与函数项级数的性质 第十四章 幂级数 1 幂级数 2 函数的幂级数展开 一 泰勒级数 二 初等函数的幂级数展开式 3 复变量的指数函数·欧拉公式 第十五章 傅里叶级数 1 傅里叶级数 一 三角级数·正交函数系 二 以2π为周期的函数的傅里叶级数 三 收敛定理 2 以2l为周期的函数的展开式 3 收敛定理的证明 第十六章 多元函数的极限与连续 1 平面点集与多元函数 一 平面点集 二 R2上的完备性定理 三 二元函数 四 n元函数 2 二元函数的极限 3 二元函数的连续性 第十七章 多元函数微分学 1 可微性 2 复合函数微分法 3 方向导数与梯度 4 泰勒公式与极值问题 一 高阶偏导数 二 中值定理和泰勒公式 三 极值问题 第十八章 隐函数定理及其应用 1 隐函数 2 隐函数组 3 几何应用 一 平面曲线的切线与法线 二 空间曲线的切线与法平面 三 曲面的切平面与法线 4 条件极值 第十九章 含参量积分 1 含参量正常积分 2 含参量反常积分 3 欧拉积分 一 Γ函数 二 B函数 三 Γ函数与B函数之间的关系 第二十章 曲线积分 1 第一型曲线积分 2 第二型曲线积分 第二十一章 重积分 1 二重积分概念 2 直角坐标系下二重积分的计算 3 格林公式·曲线积分与路线的无关性 4 二重积分的变量变换 5 三重积分 6 重积分的应用 7 n重积分 8 反常二重积分 9 在一般条件下重积分变量变换公式的证明 第二十二章 曲面积分 1 第一型曲面积分 2 第二型曲面积分 3 高斯公式与斯托克斯公式 4 场论初步 第二十三章 流形上微积分学初阶 1 n维欧氏空间与向量函数 2 向量函数的微分 3 反函数定理和隐函数定理 4 外积、微分形式与一般斯托克斯公式