为了满足某厂1580热连轧机宽度控制精度需求,提高宽展模型的广泛适用性,利用ANSYS/LS-DYNA有限元软件,对热轧粗轧区立轧-平轧过程进行了模拟.根据模拟数据,系统地分析了轧件宽度、厚度、轧辊直径、立辊侧压量和厚度压下量对\狗骨\宽展、自然宽展和绝对宽展的影响规律.利用模拟数据并结合现场数据构造了FES(finite element simulation)\狗骨\宽展模型和自然宽展模型,并建立了PSO-BP神经网络(粒子群BP神经网络).最后,FES宽展模型与PSO-BP神经网络相结合预报第1、3和5道次的宽展,其预报值与实测值误差在1mm以内的均达到了99%以上,达到了宽度控制的精度要求
提出一种基于支持向量数据描述(support vector data description,SVDD)的生产过程监控、诊断与优化方法.首先,利用正常样本建立SVDD监控模型,获得控制限;然后,利用贡献图对超过控制限的异常点进行诊断,分析引起异常的主要原因;最后,利用邻近点替换法对异常的生产样本进行工艺参数优化.将新方法应用于热轧薄板的生产过程中,结果表明:新方法比传统的监控方法T2 PCA具有更高的检出率,且可以实现对异常点的工艺参数优化,使之回到受控状态