where f:R\×Rn×R→ R\ and g:R\×R\×R→ R are continuous functions. Assume that f, g are continuously differentiable with respect to their first two arguments in a neigborhood of the trajectory co(t), yo(t), and that the derivative
3.1.2 A general uniqueness theorem The key issue for uniqueness of solutions turns out to be the maximal slope of a=a(a) to guarantee uniqueness on time interval T=[to, t,, it is sufficient to require existence of a constant M such that