点击切换搜索课件文库搜索结果(102)
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:PPT 文档大小:1.17MB 文档页数:40
1. 了解分析化学中EDTA及其螯合物的分析特性。 2. 掌握络合平衡的副反应系数和条件稳定常数的计算。 3. 了解金属离子指示剂的作用原理、指示剂的选择原则及常用的金属离子指示剂的使用条件。 4. 熟悉络合滴定曲线、化学计量点和滴定突跃。 5. 了解络合滴定的应用及计算。 10.1 EDTA:络合滴定最重要的滴定剂 EDTA –the most important titrant in complexometric titration 10.2 条件稳定常数 Conditional stability constant 10.3 络合滴定原理 Principle of complexometric titration 10.4 滴定干扰的消除 Wipe-out of disturbance in complexometric titration 10.5 络合滴定方式 Titration methods employing EDTA
文档格式:PDF 文档大小:891.95KB 文档页数:53
本章主要介绍数据与文字的表示方法,定点加/减法运算及加法器,定点乘法运算,定点除法运算,定点运算器的组成与结构,浮点运算方法和浮点运算器。 2.1 数据与文字的表示方法 2.2 定点数的加减法运算及加法器 2.3 定点乘法运算 2.4 定点除法运算 2.5定点运算器的组成与结构 2.6浮点运算方法和浮点运算器
文档格式:PDF 文档大小:625.45KB 文档页数:29
一、动点研究对象 动点是指相对于定系和动系均有运动的点。 二、两个坐标系 1.定坐标系 建立在固定参考物上的坐标系,简称定系。一般将定系固结在地面上。 2.动坐标系 动坐标系指建立在相对于定系运动着的物体上的坐标系,简称动系。有时可称为载体系。 三、三种运动绝对运动、相对运动和牵连运动 1.绝对运动:动点相对于定系的运动。 2.相对运动:动点相对于动系的运动。 3.牵连运动:动系相对于定系的运动
文档格式:PPT 文档大小:333.5KB 文档页数:34
一、问题的提出 二、风险资产定价理论发展进程图示 三、圣.彼得堡悖论(st. Petersburg paradox) 四、亨利.马可维兹的投资组合理论(Harry Markowitz' Portfolio Theory) 五、资本资产定价模型(Capital Asset Pricing Model,capm 六、莫迪里安尼(Modigliani)和米勒()的资本结构定理,mMT 七、罗尔(Roll)和罗斯(Ross)的套利定价模型,APT 八、金融衍生品定价:远期、期货和期权的定价 九、几点评论
文档格式:PPT 文档大小:416KB 文档页数:26
第四章 非水水酸碱滴定法 一、非水滴定法:在非水溶液中进行的滴定分析法 二、非水酸碱滴定法:在非水溶液中进行的酸碱滴定法 两种酸碱滴定法对比 1.以水为溶剂的酸碱滴定法的特点: 优点:易得,易纯化,价廉,安全 缺点:当酸碱太弱,无法准确滴定 有机酸、碱溶解度小,无法滴定强度接近的多元或混合酸碱无法分步或分别滴定 2.非水酸碱滴定法的特点 非水溶剂为滴定介质→增大有机物溶解度改变物质酸碱性扩大酸碱滴定范围
文档格式:PDF 文档大小:1.5MB 文档页数:111
 Z变换的正变换和逆变换定义,以及收敛域与序列特性之间的关系。  Z变换的定理和性质: 移位、 反转、 z域微分、 共轭序列的Z变换、 时域卷积定理、 初值定理、 终值定理、帕斯瓦尔定理。  系统的传输函数和系统函数的求解。  用极点分布判断系统的因果性和稳定性。  零状态响应、 零输入响应和稳态响应的求解。  用零极点分布定性分析并画出系统的幅频特性。  4.1 Z变换定义  4.2 Z变换收敛域  4.3 Z变换的基本性质  4.4 Z反变换  4.5 几种变换的对应关系  4.5 系统函数与频率特性
文档格式:PDF 文档大小:96.17KB 文档页数:23
„ Ramsey定理的简单形式 „ 两个简单命题 „ Ramsey定理 „ 小Ramsey数的有关结果 „ Ramsey数的性质 „ Ramsey定理的推广 „ Ramsey定理的一般形式 „ Ramsey定理 „ 关于一般Ramsey数的结果 „ Ramsey定理的应用
文档格式:DOC 文档大小:143.5KB 文档页数:2
第四章4-3线性映射与线性变换(续) 4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换 E:V→V, >a. 例投影(射影)设V=V1V2,Va∈V,a=a+a2(a1eV,a2∈V2),定义V到 V的投影P(a)=a1,V到V2的投影P2(a)=a2 定义End(V)中的运算(加法、数乘和乘法) 加法定义为(A+)(a)=A(a)+B(a)(Va∈V) 数乘定义为(kA)(a)=k(A(a)),其中k∈K; 乘法(复合)定义为(AB)(a)=A(B(a)
文档格式:PPT 文档大小:303KB 文档页数:51
一:静态相对定位 用两台接接收机分别安置在基线的两个端点,其位置静 止不动,同步观测相同的4颗以上卫星,确定两个端点 在协议地球坐标系中的相对位置,这就叫做静态相对 定位。 静态相对定位一般均采用载波相位观测值(或测相伪距) 为基本观测量,对中等长度的基线(100-500km),相 对定位精度可达10-6 -10-7甚至更好,静态相对定位是目 前GPS精度最高的定位方式
首页上页4567891011下页末页
热门关键字
搜索一下,找到相关课件或文库资源 102 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有