点击切换搜索课件文库搜索结果(960)
文档格式:PPT 文档大小:2.58MB 文档页数:30
《高等数学》课程教学资源(PPT课件)第八章 空间解析几何与向量代数_2.理解单位向量、方向数与方向余弦、向量的坐标表示式,掌握用坐标表示式进行向量线性运算的方法。_》8-1向量及其线性代数
文档格式:PPT 文档大小:667.5KB 文档页数:42
曲面及其方程 一、曲面方程的概念 曲面的实例:水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义: 如果曲面S与三元方程F(x,y,)=0有下述关系: (1)曲面S上任一点的坐标都满足方程; (2)不在曲面S上的点的坐标都不满足方程;那么,方程F(x,y,)=0就叫做曲面S的方程,而曲面S就叫做方程的图形
文档格式:PPT 文档大小:676.5KB 文档页数:24
一、区域连通性的分类 设D为平面区域,如果D内任一闭曲线所 围成的部分都属于D,则称D为平面单连通区 域,否则称为复连通区域. 单连通区域 复连通区域
文档格式:DOC 文档大小:154KB 文档页数:2
9-2C,R,Q上多项式的因式分解 9.2.1复数域、实数域上多项式的因式分解 定理(高等代数基本定理)复数域C上任意一个次数≥1的多项式在C内必有一个 根。 这个定理的证明是放在复变函数课程中完成的。 由高等代数基本定理,我们得到C[x]内多项式的因式分解的重要结论: 命题C[x]内一个次数≥1的多项式p(x)是不可约多项式的充分必要条件为它是一次 多项式。 证明在任一数域K上的一次多项式f(x)都是K[x]内的不可约多项式(因为 (f(x),f(x)=1)。现在假设p(x)是C[x]内的一个不可约多项式
文档格式:PPT 文档大小:209.5KB 文档页数:26
1.理解两类曲线和曲面积分的概念,了解两类积分的性质以及两类积分的关系。 2.掌握计算两类曲线、曲面积分的方法。 3.掌握格林公式并会运用平面曲线积分与路径无关的条件。 4.了解高斯公式,并会用高斯公式求曲面积分。 5.会用曲线积分和曲面积分求一些几何量与物理量(弧长﹑质量﹑重心﹑转动惯量﹑引力、功和流量等)
文档格式:DOC 文档大小:98KB 文档页数:3
第六章带度量的线性空间 6-1欧几里得空间 设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义 lalv(a,a) 为向量a的长度或模.|a|=1时,称a为单位向量 命题1.1(柯西-布尼雅可夫斯基不等式)对欧氏空间V内任意两个向量a,,有
文档格式:DOC 文档大小:194.5KB 文档页数:7
第二章2-5n阶方阵 2.5.1n阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、 下三角矩阵 定义(数域K上的n阶方阵)数域K上的nn矩阵成为K上的n阶方阵,K上全 体n阶方阵所成的集合记作Mn(K)。 定义(n阶对角矩阵、数量矩阵、单位矩阵)数域K上形如 ( 0 0 n /nxn 的方阵被称为n阶对角矩阵,与其他矩阵相乘,有 (a1a12and
文档格式:DOC 文档大小:1.24MB 文档页数:4
1.求函数z=x2+y2在点(1,2)处沿从点(1,2)到点(2,2+√3)的方向的方向导数. 2.求函数z=ln(x+y)在抛物线y2=4x上点(1,2)处,沿这抛物线在该点处偏向x轴正向的切线方向的方向导数
文档格式:PPT 文档大小:873.5KB 文档页数:31
预备知识 空间的三个坐标系 小结 三重积分的概念 在直角坐标系下计算三重积分
文档格式:DOC 文档大小:111KB 文档页数:2
设E1,E2,…,E是线性空间V的一组基,在这组基下,V中每个向量都有确定 的坐标,而向量的坐标可以看成P元素,因此向量与它的坐标之间的对应实质 上就是V到P的一个映射.显然这个映射是单射与满射,换句话说,坐标给出了 线性空间V与P的一个双射.这个对应的重要性表现在它与运算的关系上
首页上页7778798081828384下页末页
热门关键字
搜索一下,找到相关课件或文库资源 960 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有