点击切换搜索课件文库搜索结果(990)
文档格式:DOC 文档大小:214KB 文档页数:4
由前一节的讨论,已经得到下面的两点性质: 1.辛空间(V,f)中一定能找到一组基E,E2,n-2n满足 f(n)=1,1≤i≤n, f()=0,-n≤i,jn,i+j≠0
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:DOC 文档大小:116.5KB 文档页数:3
一、向量的线性相关与线性无关 定义 2 设 V 是数域 P 上的一个线性空间
文档格式:DOC 文档大小:26.5KB 文档页数:1
一、排列的定义 定义 1 由 1,2,  ,n 组成的一个有序数组称为一个 n 级排列
文档格式:PPT 文档大小:3.77MB 文档页数:133
§1 多元函数的基本概念 §2 偏导数 §3 全微分 §4 一元复合函数求导法则 §5 隐函数的求导方法 §6 多元函数的极值及其求法 §7 二重积分的概念与性质 §8 二重积分的计算法
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0在C内有非零解向量
文档格式:DOC 文档大小:127.5KB 文档页数:2
设A是n维欧氏空间V内的一个线性变换,如果对a,∈V,都有 (Aa,)=(a, AB) 则称A是V内的对称变换 命题n维欧氏空间V上的线性变换A是对称变换当且仅当它在标准正交基 ,2n下的矩阵A是实对称矩阵
文档格式:DOC 文档大小:419.5KB 文档页数:5
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下:
文档格式:PPT 文档大小:1.3MB 文档页数:61
1向量的概念及向量的表示 一、向量的基本概念 (一)向量的概念 1向量:既有大小,又有方向的量称为向量(或矢量)。 2向量的几何表示法:
首页上页8889909192939495下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有