点击切换搜索课件文库搜索结果(9824)
文档格式:PPT 文档大小:1.2MB 文档页数:40
到目前为止, 我们所学习的只是一元函数的分析性质。但在现实 生活中,除了非常简单的情况之外,可以仅用一个自变量和一个因变 量的变化关系来刻画的问题可以说是非常少的。比如像物理学中研究 质点运动这么一个相对较为容易的问题,也需要用到确定空间位置的 三个坐标变量 x、y、z 和一个时间变量 t 以及多个函数值(如位置、 速度、加速度、动量等),更不用说在各种不同的学科研究中会遇到 更为复杂的问题。这种多个自变量和多个因变量的变化关系,反映到 数学上就是多元函数(或多元函数组,即向量值函数)
文档格式:PDF 文档大小:311.83KB 文档页数:34
反常积分 前面讨论 Riemann 积分时,假定了积分区间[, ] a b 有限且被积函 数 f x( )在[, ] a b 上有界,但在实际应用中经常会碰到不满足这两个条 件,却需要求积分的情况。所以,有必要突破 Riemann 积分的限制 条件,考虑积分区间无限或被积函数无界的积分问题,这样的积分称 为反常积分(或广义积分),而以前学过的 Riemann 积分相应地称 为正常积分(或常义积分)
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PDF 文档大小:188.57KB 文档页数:22
性质1(线性性)设f(x)和8(x)都在[a,b上可积,k1和k2是常数 小函数kf(x)+k2g(x)在a,b上也可积,且有 ∫k/(x)+k8(x)x=k(x)dx+Jg(x)x 证对anb的任意一个划分 q=x0
文档格式:PDF 文档大小:198.13KB 文档页数:29
有理函数的不定积分 形如2n(x的函数称为有理函数,这里p(x)和④(x)分别是m次和 q,(x) n次多项式。在本节中,我们将通过介绍求一般有理函数的不定积分 的方法,证明这样的一个结论:有理函数的原函数一定是初等函数。 求有理函数的不定积分是我们在实际应用中经常遇到的问题。此 外,对于求某些其他类型函数的不定积分,如无理函数、三角函数的 不定积分问题,也可以通过适当的变换化成求有理函数的不定积分问 题而得到解决
文档格式:PPT 文档大小:41KB 文档页数:18
简述题 1.小王成立了一家专门从事楼房内外清洁的“保洁”公司。 经营这样一家公司,你认为注重哪些一般环境因素的分析 ? 答:一般环境因素的分析,应该包括国家对于保洁公司的政 策、聘请下岗工人的优惠、招聘民工的限制条件等政治环 境因素;物业管理者对专业清洁公司的社会认同,该地区 居民清洁习惯的变更情况等社会文化因素;当地的消费者 的收入水平、物业管理公司的实力、就业情况等经济环境 ;该行业技术的发展状况即清洁手段、清洁工具的发展等 技术环境因素和该市场所在地的环境状况、污染情况等自 然环境因素
文档格式:PDF 文档大小:154.29KB 文档页数:21
无穷大量 随着n的增大,通项的绝对值也无限地增大的数列称为无穷大 量,其严格的分析定义为: 定义2.3.1若对于任意给定的G>0,可以找到正整数N,使得 当n>N时成立 G 则称数列{x,}是无穷大量,记为 lim
文档格式:PDF 文档大小:268.56KB 文档页数:32
Fourier 级数的分析性质 为简单起见,假定 f x( )的周期为2π。 首先,利用 Riemann 引理可以直接得出 定理 16.3.1 设 f x( )在[−π,π]上可积或绝对可积,则对于 f x( )的 Fourier 系数an与bn,有
文档格式:PDF 文档大小:236.62KB 文档页数:26
Beta函数 形如 B(p,q)=x-(1-x)-dx 的含参变量积分称为Beta函数,或第一类 Euler积分。 先讨论它的定义域。将Beta函数写成 B(, 9)=(d-x)dx+ x-(1-x)-dx, 当x→0时,x-(1-x)-~x-1,所以只有当p>0时右边第一个反常积 分收敛
文档格式:PDF 文档大小:368.87KB 文档页数:41
含参变量反常积分的一致收敛 含参变量的反常积分也有两种:无穷区间上的含参变量反常积 分 和无界函数的含参变量反常积分
首页上页917918919920921922923924下页末页
热门关键字
搜索一下,找到相关课件或文库资源 9824 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有