点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:1.58MB 文档页数:21
RIGI0 BoDY DYNAMICS ·T叭ocAP0 NENTS千0RtG1D80 y MoTIo 千 RANSLAT(0NAL F= M R升 TIONAL D ECOU PLE PRO vIED 工ND0FRTT0A AA0A工Nb0FTRA5L|N
文档格式:PDF 文档大小:961.48KB 文档页数:13
P CDN STANT Wow TAKE THE MOMENT OF MOMENTUM (ANGULAR MOMENTUM) MUST EXPLICITLY DEFINE A POWT ABOUT WHICH WE TAKE THE MOMENT
文档格式:PDF 文档大小:1.34MB 文档页数:15
NEWTONs L丹WS ① BoDY CoNTINUES玉 N TTS STATE OF MOT(0N DR REST UNLESS FORCED DI RECTIoNs IMPoRTA
文档格式:PDF 文档大小:1.11MB 文档页数:11
EROSPACE DYNAMiCS EXAMPLE: GWE ACCELERATIoN of THE TIP 0F认ERU0毛R人TM5Hc人AF LDk小 G For A650LUT # CCELER升T10 N UTH RES/∈ct T0wE工NERT1 AL FRAME (∈ TH IN THiS CASE) 0EFNE兵8uNcH0 f PoINTS
文档格式:PDF 文档大小:442.78KB 文档页数:10
根据生命科学的研究对象进行分类,动力学的理论方法在不同尺度生物系统上的应用做了回顾与总结,重点阐述了近年来的相关研究进展
文档格式:PDF 文档大小:111.54KB 文档页数:6
Lyapunov analysis, which uses monotonicity of a given function of system state along trajectories of a given dynamical system, is a major tool of nonlinear system analysis It is possible, however, to use monotonicity of volumes of subsets of the state space to predict certain properties of system behavior. This lecture gives an introduction to suc methods
文档格式:PDF 文档大小:99.82KB 文档页数:5
where f:R\×Rn×R→ R\ and g:R\×R\×R→ R are continuous functions. Assume that f, g are continuously differentiable with respect to their first two arguments in a neigborhood of the trajectory co(t), yo(t), and that the derivative
文档格式:PDF 文档大小:99.49KB 文档页数:4
This lecture presents results describing the relation between existence of Lyapunov or storage functions and stability of dynamical systems 6.1 Stability of an equilibria
文档格式:PDF 文档大小:181.93KB 文档页数:13
In particular, when o=0, this yields the definition of a Lyapunov function Finding, for a given supply rate, a valid storage function(or at least proving that one exists)is a major challenge in constructive analysis of nonlinear systems. The most com-
文档格式:PDF 文档大小:109.3KB 文档页数:5
Definition A real-valued function V: X H R defined on state space X of a system with behavior set B and state r:B×[0,∞)→ X is called a Lyapunov function if tHv(t)=v(a(t))=v(a(z(), t)) is a non-increasing function of time for every z E B according to this definition, Lyapunov
首页上页9293949596979899下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有