点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:101.29KB 文档页数:5
Using control authority to transform nonlinear models into linear ones is one of the most commonly used ideas of practical nonlinear control design. Generally, the trick helps one to recognize \simple\nonlinear feedback design tasks
文档格式:PPT 文档大小:1.14MB 文档页数:71
一、密钥管理的基本概念 二、密钥生成与密钥分发 三、秘密共享与密钥托管 四、非线性序列
文档格式:PPT 文档大小:835KB 文档页数:80
第一节 相关关系、基本概念 一. 变量相关的概念 二. 相关系数及其计算 第二节 简单线性回归分析 第三节 非线性回归分析
文档格式:PPT 文档大小:546.5KB 文档页数:44
一、序列密码的基本概念 二、线性反馈移位寄存器 三、B-M综合算法 四、非线性序列
文档格式:PDF 文档大小:111.54KB 文档页数:6
Lyapunov analysis, which uses monotonicity of a given function of system state along trajectories of a given dynamical system, is a major tool of nonlinear system analysis It is possible, however, to use monotonicity of volumes of subsets of the state space to predict certain properties of system behavior. This lecture gives an introduction to suc methods
文档格式:PDF 文档大小:99.82KB 文档页数:5
where f:R\×Rn×R→ R\ and g:R\×R\×R→ R are continuous functions. Assume that f, g are continuously differentiable with respect to their first two arguments in a neigborhood of the trajectory co(t), yo(t), and that the derivative
文档格式:PDF 文档大小:99.49KB 文档页数:4
This lecture presents results describing the relation between existence of Lyapunov or storage functions and stability of dynamical systems 6.1 Stability of an equilibria
文档格式:PDF 文档大小:181.93KB 文档页数:13
In particular, when o=0, this yields the definition of a Lyapunov function Finding, for a given supply rate, a valid storage function(or at least proving that one exists)is a major challenge in constructive analysis of nonlinear systems. The most com-
文档格式:PDF 文档大小:109.3KB 文档页数:5
Definition A real-valued function V: X H R defined on state space X of a system with behavior set B and state r:B×[0,∞)→ X is called a Lyapunov function if tHv(t)=v(a(t))=v(a(z(), t)) is a non-increasing function of time for every z E B according to this definition, Lyapunov
文档格式:PDF 文档大小:126.15KB 文档页数:8
he variable t is usually referred to as the\time Note the use of an integral form in the formal definition(2.2): it assumes that the function tHa(a(t), t)is integrable on T, but does not require =a(t)to be differentiable at any particular point, which turns out to be convenient for working with discontinuous
首页上页9293949596979899下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有