点击切换搜索课件文库搜索结果(76)
文档格式:DOC 文档大小:319KB 文档页数:21
第五章煤发热量的测定 火电厂是利用煤炭等燃料燃烧产生热量来生产电能的企业。发热量的高低是煤炭计价的 主要依据,是计算电厂经济指标标准煤耗的主要参数,故发热量的测定在发电厂煤质检测中 占有特殊重要的地位
文档格式:DOC 文档大小:258KB 文档页数:28
煤的化学组成和结构十分复杂,但作为能源使用,只要了解它与燃烧有关的组成,例如 工业分析组成和元素分析组成,就能满足电厂燃烧技术和有关热力计算等方面的要求。 第一节煤的工业分析 煤的工业分析组成包括水分、灰分、挥发分和固定碳四项成分。根据工业分析,可初步 判断煤的种类、性质和工业用途。在火电厂中,工业分析数据是锅炉运行人员调节燃烧工 况、计算热效率和提高锅炉运行的安全性和经济性不可缺少的依据
文档格式:DOC 文档大小:165KB 文档页数:12
第一节煤的形成、组成和特性 一、煤的形成 煤是由古代植物形成的。植物分低等植物和高等植物两大类。在地球上储量最多的煤由 高等植物形成,统称为腐植煤,即现代被广泛使用的褐煤、烟煤和无烟煤等。高等植物的有 机化学组成主要为纤维素和本质素,此外还有少量蛋白质和脂类化合物等;无机化学组成主 要为矿物质
文档格式:DOC 文档大小:473KB 文档页数:11
第二章燃料的采样与制样 第一节概述 煤是粒度及化学性质都很不均匀的散装固体物料,要从大量的煤中采制出能代表这批煤 平均质量的少量样品,具有很大的难度。在煤的采样、制样、化验三个环节中,如果用方差 来表示误差的话,采样的影响占80%,制样占16%,化验占4%,故在煤质分析中,关键 是采样,其次就是制样。只有获得有代表性的样品,才可能进行其后的制样与化验。为了保 证所采集的样品具有代表性,就必须遵循一定的原则,采样科学的方法,了解其技术要求, 并掌握其操作要点才能予以实现
文档格式:DOC 文档大小:249.5KB 文档页数:15
第四章煤的物理化学特性及其测定 对于火电厂的动力煤,除需要了解其化学组成外,还必须了解与其使用有关的物理化学 特性,以便在选用燃烧设备、设计燃烧系统改善或提高燃烧经济性和确保锅炉安全运行等 方面提供重要依据。动力煤的主要物理化学特性有:密度、着火性、可磨性、煤粉细度和煤 灰的熔融性等
文档格式:PPT 文档大小:851.5KB 文档页数:55
第一节 燃料的种类 第二节 煤的化学成分与性质 第三节 我国发电厂煤粉锅炉用煤的分类
文档格式:PDF 文档大小:15.96MB 文档页数:182
第一节 电厂锅炉概述 第二节 燃料的成分及特性 第三节 煤粉及其制备系统 第四节 煤粉燃烧 第五节 锅炉受热面 第六节 锅炉的主要辅助设备 附录:各种不同型号锅炉
文档格式:PDF 文档大小:2.68MB 文档页数:297
300MW火电机组培训教材《燃料运输设备及系统》是湖南华润电力鲤鱼江有限公司300MW机组培训教材的一个分册,针对该公司的输煤系统及设备布置重点介绍了燃料管理、系统控制、皮带机、翻车机、斗轮堆取料机、以及控制系统常用的传感器等内容
文档格式:PDF 文档大小:397.25KB 文档页数:6
针对联合循环发电厂(combined cycle power plant,CCPP)煤气系统因工况变化频繁带来的模型与过程不匹配的问题,提出一种基于OS-ELM (online sequential extreme learning machine)的CCPP副产煤气燃料系统在线性能预测方法.首先通过分析副产煤气系统各主要组成部件的工作原理,利用流体力学、质量守恒以及能量守恒等关系,建立起以离心压缩机、煤水分离器、冷却器等为核心部件的副产煤气系统机理模型.利用OS-ELM算法和滑动窗口技术对机理模型的输出误差进行修正,实现副产煤气系统出口参数的精确预测和模型的快速在线更新.仿真实验证明,该方法能够准确地预测副产煤气系统的输出压比和温比,并能够跟踪煤气系统工况的变化和特性的漂移,满足实际工业生产的需求
文档格式:PDF 文档大小:9MB 文档页数:10
以一款插电式燃料电池电动汽车(plug-in fuel cell electric vehicle,PFCEV)为研究对象,为改善燃料电池氢气消耗和电池电量消耗之间的均衡,实现插电式燃料电池电动汽车的燃料电池与动力电池之间的最优能量分配,考虑燃料电池汽车实时能量分配的即时回报及未来累积折扣回报,以整车作为环境,整车控制作为智能体,提出了一种基于增强学习算法的插电式燃料电池电动汽车能量管理控制策略.通过Matlab/Simulink建立整车仿真模型对所提出的策略进行仿真验证,相比于基于规则的策略,在不同行驶里程下,电池均可保持一定的电量,整车的综合能耗得到明显降低,在100、200和300 km行驶里程下整车百公里能耗分别降低8.84%、29.5%和38.6%;基于快速原型开发平台进行硬件在环试验验证,城市行驶工况工况下整车综合能耗降低20.8%,硬件在环试验结果与仿真结果基本一致,表明了所制定能量管理策略的有效性和可行性
12345678下页
热门关键字
搜索一下,找到相关课件或文库资源 76 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有