Contents of Today S.J.T.U. Phase Transformation and Applications Review previous Second law Functions F and G Property relation Property relation derived from U,H,F,and G etc. SJTU Physical Chemistry of Materials Spring2010©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I Contents of Today Review previous Second law Functions F and G Property relation Property relation derived from U, H, F, and G etc
1.6 The Closed System S.J.T.U. Phase Transformation and Applications 1st Law:for a closed system Conservation of energy 8&Q+δW=dLU Nuclear reaction? Q and W are not state functions U is a point or state function 8O+W=dU+d(PE)+d(KE) PE:potential energy KE:kinetic energy Usefulness:one of the terms is unknown SJTU Physical Chemistry of Materials Spring2010©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I 1.6 The Closed System 1 st Law: for a closed system QW dU Q and W are not state functions U is a point or state function QW dU d(PE) d(KE) PE: potential energy KE: kinetic energy Usefulness: one of the terms is unknown Conservation of energy Nuclear reaction?
1.10 Enthalpy S.J.T.U. Phase Transformation and Applications Enthalpy:defined as U+PV Relative value! (H,)mn,-(H。)n。+2+oW=dU System boundary δm SJTU Physical Chemistry of Materials Spring2010©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I 1.10 Enthalpy (Hi )mi (Ho )mo QW dU Enthalpy: defined as U + PV System boundary P mi mo Relative value!
1.15 Equations of State (1) S.J.T.U. Phase Transformation and Applications Equations of state the relationship among the physical variables that describe the condition of a material. For gases the relationship between pressure(P),volume (V), temperature (T)and number of moles(n). PV=ART PV-RT R:the universal gas constant:8.314 J/(mol.K) One mole of gas at 273.15 K and one atmosphere V=22.4L/mol 状态方程 理想气体的状态方程 SJTU Physical Chemistry of Materials Spring 2010 ©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I 1.15 Equations of State (1) Equations of state : the relationship among the physical variables that describe the condition of a material. For gases : the relationship between pressure (P), volume (V), temperature (T) and number of moles (n). PV nRT PV RT R : the universal gas constant: 8.314 J/(molK). V 22.4L/ mol One mole of gas at 273.15 K and one atmosphere 状态方程 理想气体的状态方程
1.17 Adiabatic Compression or Expansion (3) S.J.T.U. Phase Transformation and Applications g For reversible,adiabatic process in an ideal gas 27 、2} TP %=const const PVY const 绝热压缩和膨胀 SJTU Physical Chemistry of Materials Spring 2010 ©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I 1.17 Adiabatic Compression or Expansion (3) T dT R C P dP P ( ) CP R P P T T ( ) 1 2 1 2 For reversible, adiabatic process in an ideal gas TP const CP R TP const 1 PV const V P C C 绝热压缩和膨胀
Reversible Process (2) S.J.T.U. Phase Transformation and Applications 功的计算、可逆过程和最大功 活塞上砝码同时取走三个,外压P,一 0h 次降低到p2,并在P,外压下,气体体积 口▣口▣ 由V,膨胀到V, p2 活塞上砝码分二次取走,外压由卫,分 段经p;降到p2,气体由'分段经V‘; 膨胀到V2 膨胀过程中,外压始终比系统内压相 1A5 c 差无限小 图1-5不同途径下气体等温膨胀示意图 当系统以上述三种途径达到终态后,再各自以其相反的过程回到始态,这就构 成了与原过程方向相反的三种途径。今分别计算其正、逆过程的体积功,分析 比较,引入可逆过程的概念 SJTU Physical Chemistry of Materials Spring2010©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I Reversible Process (2) 功的计算、可逆过程和最大功 活塞上砝码同时取走三个,外压p1一 次降低到p2,并在p2外压下,气体体积 由V1膨胀到V2 活塞上砝码分二次取走,外压由p1分 段经 p„; 降到p2,气体由V1分段经 V „; 膨胀到V2 膨胀过程中,外压始终比系统内压相 差无限小 当系统以上述三种途径达到终态后,再各自以其相反的过程回到始态,这就构 成了与原过程方向相反的三种途径。今分别计算其正、逆过程的体积功,分析 比较,引入可逆过程的概念
Reversible Process(7) S.J.T.U. Phase Transformation and Annlications 表1-1不同途径功的比较 途 径 I及I 亚及I Ⅲ及亚' W正 -1.87(I) -2.49正) -3,46() W/KJ W逆 +7.48(1)+4.990) +3.46(Ⅲ') W正+W递 +5.61 +2.50 0 由表可知系统由一个状态变化到另一状态,可以通过不同的途径来实现。 当系统状态变化后,再使系统恢复到始态,环境不一定能复原,只有途径 I,当系统复原时环境中没有留下功变热的痕迹,此过程为可逆过程。而 另一种情况是系统经过途径、Ⅱ后,系统虽复原,但环境中留下功变热的 痕迹,途径I、Ⅱ为不可逆过程。 当系统由始态经过某一过程变到终态Ⅱ后,如能使系统再回到原态,同时 也消除了原过程对环境所产生的一切影响,则原来过程称为可逆过程。 反之,某过程进行后,如果用任何方法都不可能使系统和环境完全复原, 则此过程称为不可逆过程。 SJTU Physical Chemistry of Materials Spring2010©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I Reversible Process (7) 由表可知系统由一个状态变化到另一状态,可以通过不同的途径来实现。 当系统状态变化后,再使系统恢复到始态,环境不一定能复原,只有途径 III,当系统复原时环境中没有留下功变热的痕迹,此过程为可逆过程。而 另一种情况是系统经过途径I、II后,系统虽复原,但环境中留下功变热的 痕迹,途径I、II为不可逆过程。 当系统由始态I经过某一过程变到终态II后,如能使系统再回到原态,同时 也消除了原过程对环境所产生的一切影响,则原来过程称为可逆过程。 反之,某过程进行后,如果用任何方法都不可能使系统和环境完全复原, 则此过程称为不可逆过程
Heat Engine S.J.T.U. Phase Transformation and Applications A 0 D B B C Pressure B Volume SJTU Physical Chemistry of Materials Spring 2010 ©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I Heat Engine
Carnot cycle(8) S.J.T.U. Phase Transformation and Applications Isothermal Adiabatic Isothermal Adiabatic A->B B->C C->D D->A ∑ C(T-T)0 R(T-T2)I V20 V V2,0 RT2In V2,0 RT In V40 RT-T) △U 0 C(T-T2)0 0 k-k 9+ 1=0 Va L SJTU Physical Chemistry of Materials Spring2010©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I Carnot cycle (8) W ln 0 3 4 1 V V Q ln 0 RT 1 2 2 V V RT ln 0 1 2 2 V V RT U 0 A->B B->C C->D D->A 0 Isothermal Adiabatic Isothermal Adiabatic ln 0 3 4 1 V V RT 0 0 CV (T1 T2 ) 0 CV (T2 T1 ) 0 CV (T1 T2 ) 0 CV (T2 T1 ) 0 0 ln 0 1 2 1 2 V V R T T ln 0 1 2 2 1 V V R T T Q2 Q1 0 1 1 2 2 T Q T Q 4 3 1 2 V V V V
Entropy as a State Function(3) S.J.T.U. Phase Transformation and Applications B -i〔)+〔婴)= 号=〔学),-兽) 这一积分的数值与积分的途径无关,代表着某个状 态的改变量,定义为熵 For a close system the reversible heat flow divided by the absolute temperature of the system is a state or point function. SJTU Physical Chemistry of Materials Spring2010©X.J.Jin Lecture 5 property relation I
Phase Transformation and Applications S. J. T. U. SJTU Physical Chemistry of Materials Spring 2010 © X. J. Jin Lecture 5 property relation I Entropy as a State Function(3) 0 A B r B A r r T Q T Q T Q B A r A B r B A r T Q T Q T Q P V A B 这一积分的数值与积分的途径无关,代表着某个状 态的改变量,定义为熵 For a close system the reversible heat flow divided by the absolute temperature of the system is a state or point function