神经计算的生理和动力学指标 华南理工大学理学院数学系 刘深泉教授
神经计算的生理和动力学指标 华南理工大学理学院数学系 刘深泉教授
基于电导的 A>E 神经元模型 Threshold 1m-V)+C+∑/+∑ Synapse Resting potential Undershoot Stimulus Ions =Gma m'n(v-viond) Schematic"Action Potential SYnapse G synapse 泄漏电流,电容电流 离子电流,突触电流 8=oE2 跨膜电流,轴向传递 Resting Potential Time (ms) Real "Action Potential
基于电导的 神经元模型 • 泄漏电流,电容电流 • 离子电流,突触电流 • 跨膜电流,轴向传递 1 1 max ( ) ( ), ( ) n n ions synapse stimulus L L k t k t ions x y k ions synapse t synapse synapse dV I g V V C I I dt I G m n V V I G V V = = = − + + + = − = −
神经元发放的类型 激发峰发放( Tonic Spiking), 相图峰发放( Phasic Spiking) 激发簇发放( Ton ic Burst ing) 相图簇发放( Phasic Burst ing), 混合模式( Mixed Mode) 发放频率适应性( Spike frequency Adaptation), 第一类兴奋性( Class1 Excitability) ·第二类兴奋性(Cass2 Excitability) 发放延迟( Spike latency) 阈值振荡( Subthresho ld0 scillations), 周期选择与共振( Frequency Preference and Resonance) 时间一致与整合( Integrat ion and coincidence detect ion) 反弹峰发放( Rebound Spike), 反弹簇发放( Rebound Bursting), 阈值可变性( Thresho| d Variability) 静息与发放双稳态(Bi- stabi l ity of rest ing and spiking states) 去极化( Depolar izing after- Potentials) 适应性( Accommodation 抑制性激发峰发放( Inhibition- I nduced Spiking) 抑制性激发簇发放( Inhibition- I nduced Burst ing)等
神经元发放的类型 • 激发峰发放(Tonic Spiking), • 相图峰发放(Phasic Spiking), • 激发簇发放(Tonic Bursting), • 相图簇发放(Phasic Bursting), • 混合模式(Mixed Model), • 发放频率适应性(Spike Frequency Adaptation), • 第一类兴奋性(Class 1 Excitability), • 第二类兴奋性(Class 2 Excitability), • 发放延迟(Spike Latency), • 阈值振荡(Subthreshold Oscillations), • 周期选择与共振(Frequency Preference and Resonance), • 时间一致与整合(Integration and Coincidence Detection), • 反弹峰发放(Rebound Spike), • 反弹簇发放(Rebound Bursting), • 阈值可变性(Threshold Variability), • 静息与发放双稳态(Bi-stability of Resting and Spiking States), • 去极化(Depolarizing After-Potentials), • 适应性(Accommodation), • 抑制性激发峰发放(Inhibition-Induced Spiking), • 抑制性激发簇发放(Inhibition-Induced Bursting)等
神经元电位活动-峰发放和簇发放 Cell 16: Inj=0.7nA Cell 56a: Inj=0. 7nA 004 004081216 Time (seconds) Time(seconds) 002 Cell 64: Inj=0. 7nA Cell 71: Inj=0. 7nA 040612182 0040812162 Time [seconds) Time(seconds
神经元电位活动-峰发放和簇发放
SPIKE AND BURSTING Bursts as a unit of neuronal information relative refractory period regular spiking(RS)neocortical neuron K increasing ISIs 100ms 飞 bursts( doublets) intrinsically bursting(B)neocortical neuron 60 500pA inter-spike intervals(ms) decreasing ISIs 100ms interburst perod (intraburst) descent active period 600pA phase V(O
SPIKE AND BURSTING Bursts as a Unit of Neuronal Information
神经元一计算 Na cortical CH neuron(in vivo thalamocortical (TC)neuron(in vivo) endnote Soma/Axon KS K B c 600pA 80 mV cortical IB neuron(in vitro -20m 100 ms 60 mV 20 mV pre-Botzinger bursting neuron(in vitro) 人 60 mV
神经元-计算
CA1锥体神经元-S分岔现象 量‖b 5343321当39自 r=0.3
CA1锥体神经元-ISI分岔现象 b
神经元-S,AMP分岔现象 125128227228129 clanking) B r=0.8 Time(ms) =0.6 o.8
神经元-ISI,AMP分岔现象
神经元兴奋性 Class 1 Neural Excitability Class 2 Neural Excitability f40, CI lass 1 excitability 仝 Class 2 excitability 250 g200 30 g F-I curve g20 F-I curve 100 200 300 500 1000 1500 jected dc-current, I(pA) injected dc-current, I(pA)
神经元兴奋性
curves for simple models of type 1 and A type 2 behavior A: 6-variable Connor 3 20 et al. model of molluscan neuron 8150 NE incorporating A-type K+conductance showing type 1 50 behavior(Connor et al.1977) 100150200 B: 4-variable (A/cm) I (HA/cm) Hodgkin-Huxley model of the squid 250 giant axon membrane Zoo patch, showing type 2 behavior(Hodgkin and Huxley 1952) 910 C: 2-variable morris ecar model with type 1 parameters lorris and lecar 50100150200 % 1981) I HA/cm) I HA/cI D: Morris-Leca model with type 2 parameters
• f–I curves for simple models of type 1 and type 2 behavior. • A: 6-variable Connor et al. model of molluscan neuron, incorporating A-type K+conductance, showing type 1 behavior (Connor et al. 1977). • B: 4-variable Hodgkin–Huxley model of the squid giant axon membrane patch, showing type 2 behavior (Hodgkin and Huxley 1952). • C: 2-variable Morris– Lecar model with type 1 parameters (Morris and Lecar 1981). • D: Morris–Lecar model with type 2 parameters