
河南城建学院毕业设计(论文)1总 论1.1概述甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。1.生产的发展1)世界甲醇工业的发展总体上说,世界甲醇工业从90年代开始经历了1991-1998的供需平衡,1998-1999的供大于求,从2000年初至今的供求基本平衡三个基本阶段。据NexantChenSystems公司的最新统计,全球2004年甲醇生产能力为4226.5万t/a[2]以下是最近几年的甲醇需求统计。全球主要地区甲醇消费构成2002年2003年2001年2004年按用途分甲醛940 (31)970 (32)1010(32)1050 (33)MTBE830 (28)810(26)780 (25)760(22)(其中美国)470 (16)430 (14)340 (11)270 (8)醋酸270 (9)290 (9)300 (10)310(10)MMA90 (3)90 (3)100 (3)100 (3)其他880 (29)900 (29)970 (30)930(30)需求合计3020(100)3060(100)3100(100)3180(100)按地区分亚洲920 (30)940 (31)990 (32)1040 (33)北美1000(33)1000(33)980 (31)970(31)西欧630 (21)640 (21)650(21)670 (21)其他470 (16)480 (16)490 (16)500(16)需求合计3020(100)3060(100)3180(100)3110(100)从上表可以看出,到2004年为止,甲醇仍主要用于制造甲醛和MTBE。用于1
河南城建学院毕业设计(论文) 1 1 总 论 1.1 概述 甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经 济中占有重要地位。长期以来,甲醇都是被作为农药,医药,染料等行业的工业 原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。 1. 生产的发展 1) 世界甲醇工业的发展 总体上说,世界甲醇工业从 90 年代开始经历了 1991-1998 的供需平衡, 1998-1999 的供大于求,从 2000 年初至今的供求基本平衡三个基本阶段。[1]据 Nexant Chen Systems 公司的最新统计,全球 2004 年甲醇生产能力为 4226.5 万 t/a[2]以下是最近几年的甲醇需求统计。 全球主要地区甲醇消费构成 2001 年 2002 年 2003 年 2004 年 按用途分 甲醛 940(31) 970(32) 1010(32) 1050(33) MTBE 830(28) 810(26) 780(25) 760(22) (其中美国) 470(16) 430(14) 340(11) 270(8) 醋酸 270(9) 290(9) 300(10) 310(10) MMA 90(3) 90(3) 100(3) 100(3) 其他 880(29) 900(29) 930(30) 970(30) 需求合计 3020(100) 3060(100) 3100(100) 3180(100) 按地区分 亚洲 920(30) 940(31) 990(32) 1040(33) 北美 1000(33) 1000(33) 980(31) 970(31) 西欧 630(21) 640(21) 650(21) 670(21) 其他 470(16) 480(16) 490(16) 500(16) 需求合计 3020(100) 3060(100) 3110(100) 3180(100) 从上表可以看出,到 2004 年为止,甲醇仍主要用于制造甲醛和 MTBE。用于

年产20万吨甲醇合成工艺设计制造甲醛的甲醇用量随年份成增长趋势,而MTBE的需求量则逐年降低。亚洲需求量增长比较迅速,与此相反,北美地区需求则在减少。2)我国甲醇工业发展我国的甲醇工业经过十几年的发展,生产能力得到了很大提高。1991年,我国的生产能力仅为70万吨,截止2004年底,我国甲醇产能已达740万吨,117家生产企业共生产甲醇440.65万吨,2005年甲醇产量达到500万吨,比2004年增长22.2%,进口量99.1万吨,因此下降3.1%。2.生产技术的发展1)装置大型化于上世纪末未相比,现在新建甲醇规模超过百万吨的已不再少数。在2004一一2008年新建的14套甲醇装置中平均规模为134万t/a,其中卡塔尔二期工程项目高达230万t/a。最小规模的是智利甲醇项目,产能也达84万t/a,一些上世纪末还称得上经济规模的60万t/a装置因失去竞争力而纷纷关闭。2)二次转化和自转化工艺合成气发生占甲醇装置总投资的50%一60%,所以许多工程公司将其视为技术改进重点。已经形成的新工艺在主要是Syenetix(前ICI)的先进天然气加热炉转化工艺(AGHR),Lurgi的组合转化工艺(CR)和Topse的自热转化工艺(ATR)3)新甲醇反应器的合成技术大型甲醇生产装置必须具备与其规模相适应的甲醇反应器和反应技术。传统甲醇合成反应器有ICI的冷激型反应器,Lungi的管壳式反应器,Topsdpe的径向流动反应器等,近期出现的新合成甲醇反应器有日本东洋工程的MRF--Z反应器等,而反应技术方面则出现了Lurgi推出的水冷一气冷相结合的新流程。4)引入膜分离技术的反应技术通常的甲醇合成工艺中,未反应气体需循环返回反应器,而KPT则提出将未反应气体送往膜分离器,并将气体分为富含氢气的气体,前者作燃料用,后者返回反应器。5)液相合成工艺传统甲醇合成采用气相工艺,不足之处是原料单程转化率低,合成气净化成本高,能耗高。相比之下,液相合成由于使用了比热容高,导热系数大的长链2
年产 20 万吨甲醇合成工艺设计 2 制造甲醛的甲醇用量随年份成增长趋势,而 MTBE 的需求量则逐年降低。亚洲 需求量增长比较迅速,与此相反,北美地区需求则在减少。 2) 我国甲醇工业发展 我国的甲醇工业经过十几年的发展,生产能力得到了很大提高。1991 年, 我国的生产能力仅为 70 万吨,截止 2004 年底,我国甲醇产能已达 740 万吨,117 家生产企业共生产甲醇 440.65 万吨,2005 年甲醇产量达到 500 万吨,比 2004 年增长 22.2%,进口量 99.1 万吨,因此下降 3.1%。 2.生产技术的发展 1) 装置大型化 于上世纪末相比,现在新建甲醇规模超过百万吨的已不再少数。在 2004— —2008 年新建的 14 套甲醇装置中平均规模为 134 万 t/a,其中卡塔尔二期工程 项目高达 230 万 t/a。最小规模的是智利甲醇项目,产能也达 84 万 t/a,一些上 世纪末还称得上经济规模的 60 万 t/a 装置因失去竞争力而纷纷关闭。 2) 二次转化和自转化工艺 合成气发生占甲醇装置总投资的 50%—60%,所以许多工程公司将其视为技 术改进重点。已经形成的新工艺在主要是 Syenetix(前 ICI)的先进天然气加热炉 转化工艺(AGHR),Lurgi 的组合转化工艺(CR)和 Tops e 的自热转化工艺(ATR) 3) 新甲醇反应器的合成技术 大型甲醇生产装置必须具备与其规模相适应的甲醇反应器和反应技术。传 统甲醇合成反应器有 ICI 的冷激型反应器,Lungi 的管壳式反应器,Topsdpe 的 径向流动反应器等,近期出现的新合成甲醇反应器有日本东洋工程的 MRF-Z 反 应器等,而反应技术方面则出现了 Lurgi 推出的水冷一气冷相结合的新流程。 4) 引入膜分离技术的反应技术 通常的甲醇合成工艺中,未反应气体需循环返回反应器,而 KPT 则提出将 未反应气体送往膜分离器,并将气体分为富含氢气的气体,前者作燃料用,后者 返回反应器。 5) 液相合成工艺 传统甲醇合成采用气相工艺,不足之处是原料单程转化率低,合成气净化 成本高,能耗高。相比之下,液相合成由于使用了比热容高,导热系数大的长链

河南城建学院毕业设计(论文)烷烃化合物作反应介质,可使甲醇合成在等温条件下进行。1.2甲醇的合成方法1.常用的合成方法当今甲醇生产技术主要采用中压法和低压法两种工艺,并且以低压法为主,这两种方法生产的甲醇约占世界甲醇产量的80%以上。高压法:(19.6-29.4Mpa)是最初生产甲醇的方法,采用锌铬催化剂,反应温度360-400℃,压力19.6-29.4Mpa。高压法由于原料和动力消耗大,反应温度高,生成粗甲醇中有机杂质含量高,而且投资大,其发展长期以来处于停顿状态。低压法:(5.0-8.0Mpa)是20世纪60年代后期发展起来的甲醇合成技术,低压法基于高活性的铜基催化剂,其活性明显高于锌铬催化剂,反应温度低(240-270℃)。在较低压力下可获得较高的甲醇收率,且选择性好,减少了副反应,改善了甲醇质量,降低了原料消耗。此外,由于压力低,动力消耗降低很多,工艺设备制造容易。中压法:(9.8-12.0Mpa)随着甲醇工业的大型化,如采用低压法势必导致工艺管道和设备较大,因此在低压法的基础上适当提高合成压力,即发展成为中压法。中压法仍采用高活性的铜基催化剂,反应温度与低压法相同,但由于提高了压力,相应的动力消耗略有增加。目前,甲醇的生产方法还主要有①甲烷直接氧化法:2CH,+02→2CH:0H.②由一氧化碳和氢气合成甲醇,③液化石油气氧化法2.本设计所采用的合成方法比较以上三者的优缺点,以投资成本,生产成本,产品收率为依据,选择中压法为生产甲醇的工艺,用CO和H2在加热压力下,在催化剂作用下合成甲醇,其主要反应式为:CO+H,→CHOH1.3甲醇的合成路线1.常用的合成工艺虽然开发了高活性的铜基催化剂,合成甲醇从高压法转向低压法,完成了合成甲醇技术的一次重大飞跃,但仍存在许多问题:反应器结构复杂;单程转化率低,气体压缩和循环的耗能大;反应温度不易控制,反应器热稳定性差。所有这3
河南城建学院毕业设计(论文) 3 烷烃化合物作反应介质,可使甲醇合成在等温条件下进行。 1.2 甲醇的合成方法 1.常用的合成方法 当今甲醇生产技术主要采用中压法和低压法两种工艺,并且以低压法为主, 这两种方法生产的甲醇约占世界甲醇产量的 80%以上。 高压法:(19.6-29.4Mpa)是最初生产甲醇的方法,采用锌铬催化剂,反应温 度 360-400℃,压力 19.6-29.4Mpa。高压法由于原料和动力消耗大,反应温度高, 生成粗甲醇中有机杂质含量高,而且投资大,其发展长期以来处于停顿状态。 低压法:(5.0-8.0 Mpa)是 20 世纪 60 年代后期发展起来的甲醇合成技术, 低压法基于高活性的铜基催化剂,其活性明显高于锌铬催化剂,反应温度低 (240-270℃)。在较低压力下可获得较高的甲醇收率,且选择性好,减少了副反 应,改善了甲醇质量,降低了原料消耗。此外,由于压力低,动力消耗降低很多, 工艺设备制造容易。 中压法:(9.8-12.0 Mpa)随着甲醇工业的大型化,如采用低压法势必导致工 艺管道和设备较大,因此在低压法的基础上适当提高合成压力,即发展成为中压 法。中压法仍采用高活性的铜基催化剂,反应温度与低压法相同,但由于提高了 压力,相应的动力消耗略有增加。 目前,甲醇的生产方法还主要有①甲烷直接氧化法:2CH4+O2→2CH3OH.②由 一氧化碳和氢气合成甲醇,③液化石油气氧化法 2.本设计所采用的合成方法 比较以上三者的优缺点,以投资成本,生产成本,产品收率为依据,选择中 压法为生产甲醇的工艺,用 CO 和 H2在加热压力下,在催化剂作用下合成甲醇, 其主要反应式为:CO+ H2→CH3OH 1.3 甲醇的合成路线 1.常用的合成工艺 虽然开发了高活性的铜基催化剂,合成甲醇从高压法转向低压法,完成了合 成甲醇技术的一次重大飞跃,但仍存在许多问题:反应器结构复杂;单程转化率 低,气体压缩和循环的耗能大;反应温度不易控制,反应器热稳定性差。所有这

年产20万吨甲醇合成工艺设计些问题向人们揭示,在合成甲醇技术方面仍有很大的潜力,更新更高的技术等待我们去开发。下面介绍20世纪80年代以来所取得的新成果(1)气液固三项合成甲醇工艺首先由美国化学系统公司提出,采用三相流化床,液相是情性介质,催化剂是ICI的Cu-Zn改进型催化剂。对液相介质的要求:在甲醇合成条件下有很好的热稳定性和化学稳定性。既是催化剂的硫化介质,又是反应热吸收介质,甲醇在液相介质中的溶解度越小越好,产物甲醇以气相的形式离开反应器。这类液相介质有如三甲苯,液体石蜡和正十六烷等。后来Berty等人提出了相反的观点,采用的液相介质除了热稳定性及化学稳定性外,要求甲醇在其溶液中的溶解度越大越好,产物甲醇不是以气相形式离开反应器,而是以液相形式离开反应器,在反应器外进行分离。经试验发现四甘醇二甲醚是极理想的液相介质。CO和H2在该液相中的气液平衡常数很大,采用Cu-Zn-AI催化剂,其单程转化率大于相同条件下气相的平衡转化率。气液固三相工艺的优点是:反应器结构简单,投资少:由于介质的存在改善了反应器的传热性能,温度易于控制,提高了反应器的热稳定性:催化剂的颗粒小,内扩散影响易于消除;合成甲醇的单程转化率高,可达15%-20%,循环比大为减小;能量回收利用率高;催化剂磨损少。缺点是三相反应器压降较大,液相内的扩散系数比气相小的多。(2)液相法合成甲醇工艺液相合成甲醇工艺的特点是采用活性更高的过度金属络合催化剂。催化剂均匀分布在液相介质中,不存在催化剂表面不均一性和内扩散影响问题,反应温度低,一般不超过200℃,20世纪80年代中期美国Brookhaven国家实验室开发了活性很高的复合型催化剂,其结构为NaOH-RONa-M(OAc)2,其中M代表过渡金属Ni,Pd或Co,R为低碳烷基,当M为Ni,R为叔戊烷基时催化剂性能最好,液相介质为四氢呋喃,反应温度为80-120℃,压力为2MPa左右,合成气单程转化率高于80%,甲醇选择性高达96%。当该催化剂与第VI族金属的羰基络合物混合使用时,能得到更好的效果,他能激活CO,并有较好的耐硫性,当合成气中还有1670×10-6的H2S时,其甲醇产率仍达33%。Mahajan等人研制了由过渡金属络合物与醇盐组成的符合催化剂,如四羰基镍和甲醇钾,以四氢呋喃为液相介质,反应温度为125℃,C0转化率大于90%选择性达99%。4
年产 20 万吨甲醇合成工艺设计 4 些问题向人们揭示,在合成甲醇技术方面仍有很大的潜力,更新更高的技术等待 我们去开发。下面介绍 20 世纪 80 年代以来所取得的新成果。 (1) 气液固三项合成甲醇工艺 首先由美国化学系统公司提出,采用三相 流化床,液相是惰性介质,催化剂是 ICI 的 Cu-Zn 改进型催化剂。对液相介质的 要求:在甲醇合成条件下有很好的热稳定性和化学稳定性。既是催化剂的硫化介 质,又是反应热吸收介质,甲醇在液相介质中的溶解度越小越好,产物甲醇以气 相的形式离开反应器。这类液相介质有如三甲苯,液体石蜡和正十六烷等。后来 Berty 等人提出了相反的观点,采用的液相介质除了热稳定性及化学稳定性外, 要求甲醇在其溶液中的溶解度越大越好,产物甲醇不是以气相形式离开反应器, 而是以液相形式离开反应器,在反应器外进行分离。经试验发现四甘醇二甲醚是 极理想的液相介质。CO 和 H2 在该液相中的气液平衡常数很大,采用 Cu-Zn-Al 催化剂,其单程转化率大于相同条件下气相的平衡转化率。 气液固三相工艺的优点是:反应器结构简单,投资少;由于介质的存在改善 了反应器的传热性能,温度易于控制,提高了反应器的热稳定性;催化剂的颗粒 小,内扩散影响易于消除;合成甲醇的单程转化率高,可达 15%-20%,循环比 大为减小;能量回收利用率高;催化剂磨损少。缺点是三相反应器压降较大,液 相内的扩散系数比气相小的多。 (2) 液相法合成甲醇工艺 液相合成甲醇工艺的特点是采用活性更高的 过度金属络合催化剂。催化剂均匀分布在液相介质中,不存在催化剂表面不均一 性和内扩散影响问题,反应温度低,一般不超过 200℃,20 世纪 80 年代中期, 美国 Brookhaven 国家实验室开发了活性很高的复合型催化剂,其结构为 NaOH-RONa-M(OAc)2,其中 M 代表过渡金属 Ni,Pd 或 Co,R 为低碳烷基,当 M 为 Ni, R 为叔戊烷基时催化剂性能最好,液相介质为四氢呋喃,反应温度为 80-120℃, 压力为 2MPa 左右,合成气单程转化率高于 80%,甲醇选择性高达 96%。当该催化 剂与第Ⅵ族金属的羰基络合物混合使用时,能得到更好的效果,他能激活 CO, 并有较好的耐硫性,当合成气中还有 1670×10-6 的 H2S 时,其甲醇产率仍达 33%。 Mahajan 等人研制了由过渡金属络合物与醇盐组成的符合催化剂,如四羰 基镍和甲醇钾,以四氢呋喃为液相介质,反应温度为 125℃,CO 转化率大于 90%, 选择性达 99%

河南城建学院毕业设计(论文)目前液相合成甲醇研究仍处在实验室阶段,尚未工业化,但它是一种很有开发前景的合成技术。该法的缺点是由于反应温度低,反应热不易回收利用;CO2和H2O容易使复合催化剂中毒,因此对合成气体的要求很苛刻,不能还有CO2和H,O,还需进一步研究。(3)新型GSSTFR和RSIPR反应器系统该系统采用反应,吸附和产物交换交替进行的一种新型反应装置。GSSTFR是指气-液-固滴流流动反应系统,CO和H2在催化剂的作用下,在此系统内进行反应合成甲醇,该甲醇马上被固态粉状吸附剂所吸附,并滴流带出反应系统。RSIPR是级间产品脱出反应系统,当以吸附气态甲醇的粉状吸附剂流入该系统时,与该系统内的液相四甘醇二甲醚进行交换,气态的甲醇被液相所吸附,然后再将四甘醇二甲醚中的甲醇分离出来。这样合成甲醇反应不断向右进行,CO的单程转化率可达100%,气相反应物不循环。这项新工艺仍处在研究之中,尚未投入工业生产,还有许多技术问题需要解决和完善。2.本设计的合成工艺经过净化的原料气,经预热加压,于5Mpa、220℃下,从上到下进入Lurgi反应器,在铜基催化剂的作用下发生反应,出口温度为250℃左右,甲醇7%左右,因此,原料气必须循环,则合成工序配置原则为图2-2。甲醇的合成是可逆放热反应,为使反应达到较高的转化率,应迅速移走反应热,本设计采用Lurgi管壳式反应器,管程走反应气,壳程走4MPa的沸腾水甲醇合水循分离成环冷塔塔器器粗甲醇骋放气图1-1合成合序配置原则甲醇合成的工艺流程(图①)5
河南城建学院毕业设计(论文) 5 合 成 塔 水 冷 器 甲醇 分离 塔 循 环 器 目前液相合成甲醇研究仍处在实验室阶段,尚未工业化,但它是一种很有 开发前景的合成技术。该法的缺点是由于反应温度低,反应热不易回收利用;CO2 和 H2O 容易使复合催化剂中毒,因此对合成气体的要求很苛刻,不能还有 CO2和 H2O,还需进一步研究。 (3) 新型 GSSTFR 和 RSIPR 反应器系统 该系统采用反应,吸附和产物交 换交替进行的一种新型反应装置。GSSTFR 是指气-液-固滴流流动反应系统,CO 和 H2 在催化剂的作用下,在此系统内进行反应合成甲醇,该甲醇马上被固态粉 状吸附剂所吸附,并滴流带出反应系统。RSIPR 是级间产品脱出反应系统,当以 吸附气态甲醇的粉状吸附剂流入该系统时,与该系统内的液相四甘醇二甲醚进行 交换,气态的甲醇被液相所吸附,然后再将四甘醇二甲醚中的甲醇分离出来。这 样合成甲醇反应不断向右进行,CO 的单程转化率可达 100%,气相反应物不循环。 这项新工艺仍处在研究之中,尚未投入工业生产,还有许多技术问题需要解决和 完善。 2.本设计的合成工艺 经过净化的原料气,经预热加压,于 5 Mpa、220 ℃下,从上到下进入 Lurgi 反应器,在铜基催化剂的作用下发生反应,出口温度为 250 ℃左右,甲醇 7%左 右,因此,原料气必须循环,则合成工序配置原则为图 2-2。 甲醇的合成是可逆放热反应,为使反应达到较高的转化率,应迅速移走反应 热,本设计采用 Lurgi 管壳式反应器,管程走反应气,壳程走 4MPa 的沸腾水 粗甲醇 驰放气 图 1-1 合成合序配置原则 甲醇合成的工艺流程(图①)

年产20万吨甲醇合成工艺设计新鲜气中压蒸气A锅炉给水排气中压蒸气A低压蒸气1驰放气→建罐气←粗甲醇(液)A图2-3Lurgi低压法甲醇合成工艺流程1.透平压缩机产2.热交换器3.锅炉水预热器4.水冷知器5.甲醇合成塔6.泡汽包7.甲醇分离器8.粗甲醇此槽这个流程是德国Lurgi公司开发的甲醇合成工艺,流程采用管壳式反应器,催化剂装在管内,反应热由管间沸腾水放走,并副产高压蒸汽,甲醇合成原料在离心式透平压缩机内加压到5.2MPa(以1:5的比例混合)循环,混合气体在进反应器前先与反应后气体换热,升温到220℃左右,然后进入管壳式反应器反应,反应热传给壳程中的水,产生的蒸汽进入汽包,出塔气温度约为250℃,含甲醇7%左右,经过换热冷却到40℃,冷凝的粗甲醇经分离器分离。分离粗甲醇后的气体适当放空,控制系统中的情性气体含量。这部分空气作为燃料,大部分气体进入透平压缩机加压返回合成塔,合成塔副产的蒸汽及外部补充的高压蒸汽一起进入过热器加热到50℃,带动透平压缩机,透平后的低压蒸汽作为甲醇精馏工段所需热源。1.4合成甲醇的目的和意义甲醇是极为重要的有机化工原料,在化工、医药、轻工、纺织及运输等行业都有广泛的应用,其衍生物产品发展前景广阔。目前甲醇的深加工产品已达120多种,我国以甲醇为原料的一次加工产品已有近30种。在化工生产中,甲醇可用于制造甲醛、醋酸、氯甲烷、甲胺、甲基叔丁基醚(MTBE)、聚乙烯醇(PVA)、6
年产 20 万吨甲醇合成工艺设计 6 这个流程是德国 Lurgi 公司开发的甲醇合成工艺,流程采用管壳式反应器, 催化剂装在管内,反应热由管间沸腾水放走,并副产高压蒸汽,甲醇合成原料在 离心式透平压缩机内加压到 5.2 MPa (以 1:5 的比例混合) 循环,混合气体在进 反应器前先与反应后气体换热,升温到 220 ℃左右,然后进入管壳式反应器反应, 反应热传给壳程中的水,产生的蒸汽进入汽包,出塔气温度约为 250 ℃,含甲 醇 7%左右,经过换热冷却到 40 ℃,冷凝的粗甲醇经分离器分离。分离粗甲醇后 的气体适当放空,控制系统中的惰性气体含量。这部分空气作为燃料,大部分气 体进入透平压缩机加压返回合成塔,合成塔副产的蒸汽及外部补充的高压蒸汽一 起进入过热器加热到 50 ℃,带动透平压缩机,透平后的低压蒸汽作为甲醇精馏 工段所需热源。 1.4 合成甲醇的目的和意义 甲醇是极为重要的有机化工原料,在化工、医药、轻工、纺织及运输等行 业都有广泛的应用,其衍生物产品发展前景广阔。目前甲醇的深加工产品已达 120 多种,我国以甲醇为原料的一次加工产品已有近 30 种。在化工生产中,甲 醇可用于制造甲醛、醋酸、氯甲烷、甲胺、甲基叔丁基醚(MTBE)、聚乙烯醇(PVA)

河南城建学院毕业设计(论文)硫酸二甲酯、对苯二甲酸二甲酯(DMT)、二甲醚、丙烯酸甲酯、甲基丙烯酸甲醇等。以甲醇为中间体的煤基化学品深加工产业:从甲醇出发生产煤基化学品是未来C1化工发展的重要方向。比如神华集团发展以甲醇为中间体的煤基化学品深加工,利用先进成熟技术,发展“甲醇一醋酸及其衍生物”;利用国外开发成功的MTO或MTP先进技术,发展“甲醇一烯烃及衍生物”的2大系列。作为替代燃料:近几年,汽车工业在我国获得了飞速发展,随之带来能源供应问题。石油作为及其重要的能源储量是有限的,而甲醇燃料以其安全、廉价、燃烧充分,利用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向之一。我国政府已充分认识到发展车用替代燃料的重要性,并开展了这方面的工作。随着C1化工的发展,由甲醇为原料合成乙二醇、乙醛和乙醇等工艺正日益受到重视。甲醇作为重要原料在敌百虫、甲基对硫磷和多菌灵等农药生产中,在医药、染料、塑料和合成纤维等工业中都有着重要的地位。甲醇还可经生物发酵生成甲醇蛋白,用作饲料添加剂,有着广阔的应用前景。1.5本设计的主要方法及原理造气工段:使用二步法造气CH+H20(气)-C0+3H2-205.85kJ/molCH+02+C02+2H2+109.45kJ/mo1CH+=02→CO+2H+35.6 kJ/mol2CH+202-C02+2H20+802.3kJ/mol合成工段5MPa下铜基催化剂作用下发生一系列反应主反应:CO+2Hz-CH,OH+102.37kJ/kmol副反应:2C0+4H2-→(CH30)2+H20+200.3kJ/kmolC0+3H2+CH+H20+115.69kJ/kmol- (A)4C0+8H2→C.HOH+3H20+49.62kJ/kmo1-7
河南城建学院毕业设计(论文) 7 硫酸二甲酯、对苯二甲酸二甲酯(DMT)、二甲醚、丙烯酸甲酯、甲基丙烯酸甲 醇等。 以甲醇为中间体的煤基化学品深加工产业:从甲醇出发生产煤基化学品是未 来 C1 化工发展的重要方向。比如神华集团发展以甲醇为中间体的煤基化学品深 加工,利用先进成熟技术,发展“甲醇-醋酸及其衍生物”;利用国外开发成功 的 MTO 或 MTP 先进技术,发展“甲醇-烯烃及衍生物”的 2 大系列。 作为替代燃料:近几年,汽车工业在我国获得了飞速发展,随之带来能源供 应问题。石油作为及其重要的能源储量是有限的,而甲醇燃料以其安全、廉价、 燃烧充分,利用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向 之一。我国政府已充分认识到发展车用替代燃料的重要性,并开展了这方面的工 作。 随着 C1 化工的发展,由甲醇为原料合成乙二醇、乙醛和乙醇等工艺正日益受 到重视。甲醇作为重要原料在敌百虫、甲基对硫磷和多菌灵等农药生产中,在医 药、染料、塑料和合成纤维等工业中都有着重要的地位。甲醇还可经生物发酵生 成甲醇蛋白,用作饲料添加剂,有着广阔的应用前景。 1.5 本设计的主要方法及原理 造气工段:使用二步法造气 CH4+H2O(气)→CO+3H2-205.85 kJ/mol CH4+O2→CO2+2H2+109.45 kJ/mol CH4+ 2 1 O2→CO+2H2+35.6 kJ/mol CH4+2O2→CO2+2H2O+802.3 kJ/mol 合成工段 5MPa 下铜基催化剂作用下发生一系列反应 主反应 : CO+2H2→CH3OH+102.37 kJ/kmol 副反应: 2CO+4H2→(CH3O)2+H2O+200.3 kJ/kmol CO+3H2→CH4+ H2O+115.69 kJ/kmol 4CO+8H2→C4H9OH+3H2O+49.62 kJ/kmol-(A)

年产20万吨甲醇合成工艺设计CO+Hz→CO+H,0-42.92kJ/kmol除(A)外,副反应的发生,都增大了CO的消耗量,降低了产率,故应尽量减少副反应。反应热力学一氧化碳加氢合成甲醇的反应式为CO+2H2 CH:OH(g)这是一个可逆放热反应,热效应△H(298K)=-90.8KJ/mol。当合成气中有CO,时,也可合成甲醇。CO2+3HzCHaOH(g)+H20这也是一个可逆放热反应,热效应△H(298K)=-58.6KJ/mol合成法反应机理本反应采用铜基催化剂,5MPa,250℃左右反应,清华大学高森泉,朱起明等认为其机理为吸附理论,反应模式为:H2+2°-→2H :?②CO+H ·→HCO :HCO+H*→HCO*H2CO :·+2H→CH3OH+3 :CHOH-→ CHOH+·反应为①,②控制。即吸附控制。8
年产 20 万吨甲醇合成工艺设计 8 CO+H2→CO +H2O-42.92 kJ/kmol 除(A)外,副反应的发生,都增大了 CO 的消耗量,降低了产率,故应尽量 减少副反应。 反应热力学 一氧化碳加氢合成甲醇的反应式为 CO+2H2 CH3OH(g) 这是一个可逆放热反应,热效应 H(298K) = −90.8KJ /mol 。 当合成气中有 CO2时,也可合成甲醇。 CO2 + 3H2 CH3OH(g) + H2O 这也是一个可逆放热反应,热效应 H(298K) = −58.6KJ /mol 合成法反应机理 本反应采用铜基催化剂,5 MPa,250 ℃左右反应,清华大学高森泉,朱起 明等认为其机理为吸附理论,反应模式为: H2+2˙→2H˙ -① CO+H˙→HCO˙-② HCO˙+H˙ →H2CO˙˙ H2CO˙˙+2H˙→CH3OH+3˙ CH3OH˙→ CH3OH+˙ 反应为①,②控制。即吸附控制

河南城建学院毕业设计(论文)2生产工艺及主要设备计算工艺计算作为化工工艺设计,工艺管道,设备的选择及生产管理,工艺条件选择的主要依据,对平衡原料,产品质量,选择最佳工艺条件,确定操作控制指标,合理利用生产的废料,废气,废热都有重要作用。2.1甲醇生产的物料平衡计算2.1.1合成塔物料平衡计算已知:年产100000吨精甲醇,每年以300个工作日计。精甲醇中甲醇含量(wt):99.95%粗甲醇组成(wt):[Lurgi低压合成工艺]甲醇:93.89%轻组分[以二甲醚(CH3)2O计]:0.188%重组分[以异丁醇C4H9OH计]:0.026%水:5.896%100000x10002=13888.89Kg/h所以:时产精甲醇:300×2413888.89×99.95%=14785.33Kg/h时产粗甲醇:93.89%根据粗甲醇组分,算得各组分的生成量为:甲醇(32):13888.89Kg/h434.03kmol/h9722.22Nm2/h二甲醚(46):27.796Kg/h13.536Nm3/h0.604kmol/h1.164 Nm3/h异丁醇(74):3.844Kg/h0.052kmol/h水(18):871.74 Kg/h48.43 kmol/h1048.84Nm3/h合成甲醇的化学反应为:.主反应:CO+2H2→CH,OH+102.37KJ/mol...?副反应:2CO+4H2→(CH3)2O+H2O+200.39KJ/mol..?CO+3H2→CH4+H2O+115.69 KJ/mol.4CO+8H2→C4H,0H+3H2O+49.62KJ/mol.. ?CO2+H2→CO+ H2O-42.92 KJ/mol9
河南城建学院毕业设计(论文) 9 2 生产工艺及主要设备计算 工艺计算作为化工工艺设计,工艺管道,设备的选择及生产管理,工艺条件 选择的主要依据,对平衡原料,产品质量,选择最佳工艺条件,确定操作控制指 标,合理利用生产的废料,废气,废热都有重要作用。 2.1 甲醇生产的物料平衡计算 2.1.1 合成塔物料平衡计算 已知:年产 100000 吨精甲醇,每年以 300 个工作日计。 精甲醇中甲醇含量(wt):99.95% 粗甲醇组成(wt):[Lurgi 低压合成工艺] 甲醇:93.89% 轻组分[以二甲醚(CH3)2O 计]:0.188% 重组分[以异丁醇 C4H9OH 计]:0.026% 水:5.896% 所以:时产精甲醇: 100000 1000 13888.89 300 24 = Kg/h 时产粗甲醇: 13888.89 99.95% 14785.33 93.89% = Kg/h 根据粗甲醇组分,算得各组分的生成量为: 甲醇(32): 13888.89 Kg/h 434.03kmol/h 9722.22 Nm3 /h 二甲醚(46):27.796 Kg/h 0.604 kmol/h 13.536 Nm3 /h 异丁醇(74):3.844 Kg/h 0.052 kmol/h 1.164 Nm3 /h 水(18): 871.74 Kg/h 48.43 kmol/h 1048.84 Nm3 /h 合成甲醇的化学反应为: 主反应:CO+2H2 → CH3OH+102.37 KJ/mol . ① 副反应:2CO+4H2 → (CH3)2O+H2O+200.39 KJ/mol . ② CO+3H2 → CH4+H2O+115.69 KJ/mol . ③ 4CO+8H2 → C4H9OH+3H2O+49.62 KJ/mol . ④ CO2+H2 → CO+ H2O-42.92 KJ/mol . ⑤

年产20万吨甲醇合成工艺设计生产中,测得每生产1吨粗甲醇生成甲烷7.56Nm3,即0.34kmol,故CH4每小时生成量为:7.56×14.78533=111.777Nm3,即4.987kmol/h,79.794Kg/h。忽略原料气带入份,根据②、③、④得反应③生成的水的量为:48.43-0.604-0.0520×3-4.987=42.683kmo1/h,即在c0逆变换中生成的H20为42.683kmol/h,即956.13Nm3/h。5.06MPa,40℃时各组分在甲醇中的溶解度列表于表2-1表2-15.06Mpa,40℃时气体在甲醇中的溶解度组分H2cOCO2N2ArCH4Nm/ 甲醇00.6820.3410.3580.6823.416溶解度0Nm3/h1.0085.5010.5040.5291.008《甲醇生产技术及进展》华东工学院出版社.1990据测定:35℃时液态甲醇中释放CO、CO2、H2等混合气中每立方米含37.14g甲醇,假定溶解气全部释放,则甲醇扩散损失为:37.14(1.008+5.501+0.504+0.529+1.008)x=0.318 kg/h1000即0.0099kmol/h,0.223Nm3/h。根据以上计算,则粗甲醇生产消耗量及生产量及组成列表2-2。表2-2甲醇生产消耗和生成物量及组成消单合计消耗物料量生成物料量耗位生成H2CO2CH4CH3OHC4H9OHH20消耗CON2(CH3)20方式①868.06434.03kmol434.03式Nm397222219444.449722.2229166.66972222②12082.4160.6040.604 kmol 式Nm327.0654.1213.53613.53681.1827.07?9.9744.9874.987kmol4.98710
年产 20 万吨甲醇合成工艺设计 10 生产中,测得每生产 1 吨粗甲醇生成甲烷 7.56 Nm3 ,即 0.34 kmol,故 CH4 每小时生成量为:7.56 14.78533=111.777 Nm3,即 4.987 kmol/h,79.794 Kg/h。 忽 略 原 料 气 带入 份 , 根据 ② 、 ③、 ④ 得 反应 ⑤ 生 成的 水 的 量为 : 48.43-0.604-0.0520 3-4.987=42.683 kmol/h,即在 CO 逆变换中生成的 H2O 为 42.683 kmol/h,即 956.13 Nm3 /h。 5.06 MPa,40℃时各组分在甲醇中的溶解度列表于表 2-1 表 2-1 5.06Mpa,40℃时气体在甲醇中的溶解度 组分 H2 CO CO2 N2 Ar CH4 溶解度 Nm3 /t 甲醇 0 0.682 3.416 0.341 0.358 0.682 Nm3 /h 0 1.008 5.501 0.504 0.529 1.008 《甲醇生产技术及进展》华东工学院出版社.1990 据测定:35 ℃时液态甲醇中释放 CO、CO2、H2 等混合气中每立方米含 37.14 g 甲醇,假定溶解气全部释放,则甲醇扩散损失为: (1.008+5.501+0.504+0.529+1.008) 1000 37.14 = 0.318 kg/h 即 0.0099kmol/h,0.223 Nm3 /h。 根据以上计算,则粗甲醇生产消耗量及生产量及组成列表 2-2。 表 2-2 甲醇生产消耗和生成物量及组成 消 耗 方 式 单 位 消耗物料量 生成物料量 合计 CO H2 CO2 N2 CH4 CH3OH C4H9OH (CH3)2O H2O 消耗 生成 ① 式 kmol 434.03 868.06 434.03 Nm3 9722.22 19444.44 9722.22 29166.66 9722.22 ② 式 kmol 1.208 2.416 0.604 0.604 Nm3 27.06 54.12 13.536 13.536 81.18 27.07 ③ kmol 4.987 9.974 4.987 4.987