Batteries The Dry Cell Battery Leclanche cell C,小.cg aper spac Moist paste of Zn ch and nhcl Z了 小O. Layer of MnO NH. CI NH CI Graphite cathode Zno Mn. o Zinc anode Zr2+-F2e 小r+ Anode: Zn(s)Zn2+(ag)+2e Cathode: 2NH4*(aq)+ 2MnO2(s)+ 2e"-Mn2O3(s)+ 2NH3(aq)+H2o() Zn(s)+ 2NH4(ag)+ 2Mno2 (s)Zn (ag)+ 2NH3(ag)+H2o (+ Mn2O3(s)
Batteries The Dry Cell Battery Leclanché cell Anode: Zn (s) → Zn2+ (aq) + 2eCathode: 2NH4 + (aq) + 2MnO2 (s) + 2e- → Mn2O3 (s) + 2NH3 (aq) + H2O (l) Zn (s) + 2NH4 (aq) + 2MnO2 (s) Zn2+ (aq) + 2NH3 (aq) + H2O (l) + Mn2O3 (s)
The Lead Storage Battery Cathode I PD anode Po. Pog cathode Poo 2e HSO H SO Negative plates(lead g Pbso Pbso filled with spongy lead) sitive plases(lead pills Po2+÷2e filled with PbO2) Anode: Pb(s)+ SO42-(aq)PbSo4(s)+ 2e Cathode: PbO2(S)+ 4H+(aq)+ SO42-(aq)+2e--PbSO4(s)+ 2H2O Pb(s)+Pbo2(S)+ 4H*(ag)+ 2s042-(ag)-2PbSO4(S)+ 2H2O(
The Lead Storage Battery Anode: Pb (s) + SO4 2- (aq) → PbSO4 (s) + 2eCathode: PbO2 (s) + 4H+ (aq) + SO4 2- (aq) + 2e- → PbSO4 (s) + 2H2O (l) Pb (s) + PbO2 (s) + 4H+ (aq) + 2SO4 2- (aq) → 2PbSO4 (s) + 2H2O (l)
Lithium lon Battery collector collector Lix si LiL-xMo Anode:Li(s)→Li+ Cathode: Li++ Coo2+e" s Li(s)+ Coo2>Licoo2(s)
Lithium Ion Battery Anode: Li(s) → Li+ + eCathode: Li+ + CoO2 + e- → LiCoO2 (s) Li(s) + CoO2 → LiCoO2 (s)
Fuel cells rlydrogeri-Oxygenl Fuel Ca Cathode C』jgde C cathode Porous carbon electrode rl ontaining Ni containing Ni and NiO KOH H2+ 4H0 +2H 0+ 4e H,O Hot KOH solution 4H.0+ 4e 4HO Oxidation Reduction 2H2(g)+40H(aq)→4H2O(D)+4O2(8)+2H20(+4→40H(ag) Anode: 2H2(g)+ 40H(aq)->4H2O(0+ 4e Cathode: O2( 9)+ 2H2o (+ 4e"->40H(ag) 2H2(g)+o2(g)→2H2O(
Fuel Cells Anode: 2H2 (g) + 4OH- (aq) → 4H2O (l) + 4eCathode: O2 (g) + 2H2O (l) + 4e- → 4OH- (aq) 2H2 (g) + O2 (g) → 2H2O (l)
锂离子电池的工作原理 充電 5225EI MCMB Coo 2 L计+6C+e→LiC6 LiMO2→L1-MO2+xLi+xe (=Co, Ni, Mn; 0<x<1) 放電 LiC6→Li++6C+e Li MO,+xLi+ xe--LiMO
e – e – e – e – e e – – - + Li+ + 6C + e –→ LiC6 LiMO2 → Li1–xMO2 + xLi+ + xe– (M = Co, Ni, Mn; 0 < x < 1) 充 電 LiC6 →Li+ + 6C + e – Li1–xMO2 + xLi+ + xe–→ LiMO2 放 電 MCMB LiCoO2 锂离子电池的工作原理
Li-ion电池的特长 ①电池电压36V/37V,由于电压高,电池使用节数减少。 ②高比能量化,使得移动型电子器件小型化和轻量化; ③没有使用金属锂、安全性高; ④没有N-Cd,Ni-MH电池一样的记忆效应,循环性能优 越 ⑤方形电池的外包装采用铝合金或铝式复合膜,电池轻; ⑥没有环境污染,称为绿色电池
① 电池电压3.6V/3.7V,由于电压高,电池使用节数减少。 ② 高比能量化,使得移动型电子器件小型化和轻量化; ③ 没有使用金属锂、安全性高; ④ 没有Ni-Cd, Ni-MH电池一样的记忆效应,循环性能优 越; ⑤ 方形电池的外包装采用铝合金或铝式复合膜,电池轻; ⑥没有环境污染,称为绿色电池。 Li-ion 电池的特长
Technique Progress in Li-ion Battery 正极材料 1. LiCoo2材料依然是主流每月600吨 2. LicoyNi1O2圆筒型电池使用可能 3.LiMn2O4已用于动力电池但高温性能有待于继续提高 4. LiCoMnNio2三元体系小型电池使用可能其综合性能有待于继续验证 负极材料: 1.人造石墨材料是主流,每月470吨,天然石墨是今后发展的必然趣势 2.Si,Sn及其复合材料虽然具有石墨材料数倍的容量,但实用化困难 电解液: 使用功能性电解液是制备高性能电池的关键 隔膜: 20μm隔膜是主流,薄型化和2成分化是今后的趋势
Technique Progress in Li-ion Battery 正极材料: 1. LiCoO2材料依然是主流,每月600吨 2. LiCoyNi1-yO2圆筒型电池使用可能 3. LiMn2O4已用于动力电池,但高温性能有待于继续提高 4. LiCoMnNiO2三元体系小型电池使用可能,其综合性能有待于继续验证 负极材料: 1. 人造石墨材料是主流,每月470吨,天然石墨是今后发展的必然趣势 2. Si,Sn及其复合材料虽然具有石墨材料数倍的容量,但实用化困难 电解液: 使用功能性电解液是制备高性能电池的关键 隔膜: 20 m隔膜是主流,薄型化和2成分化是今后的趋势
Comparison of Cathode Materials for Lithium-Ion Batteries Material Pra. Cap. Densid Vol E D. Shape SafetyCostComment (mAh/g) (mAh/cc) of D. C (g/cc) LiCoo 2 160 5.05 808 Flat Fair High LiNiO 220 4.80 1056 Slope Poor Fair Impossible LiMn,O4 110 4.20 462 Flat Good Low HEVEV LiCoo2Ni.8O2 180 485 873 Slope Fa air Fair LIP LiMnosNioso 160 4.70 752 Slope Good Low LiFePO4 160 3.70 592 Flat Good Low Low conductivity
Comparison of Cathode Materials for Lithium-Ion Batteries Material Pra. Cap. (mAh/g) Densid y (g/cc) Vol. E.D. (mAh/cc) Shape of D.C Safety Cost Comment LiCoO2 160 5.05 808 Flat Fair High LiNiO2 220 4.80 1056 Slope Poor Fair Impossible LiMn2O4 110 4.20 462 Flat Good Low HEV, EV LiCo0.2Ni0.8O2 180 4.85 873 Slope Fair- Fair LIP ? LiMn0.5Ni0.5O 2 160 4.70 752 Slope Good Lowー ? LiFePO4 160 3.70 592 Flat Good + Low Low conductivity
SEM images for LiCoO, used for commercialized LIB .215.0kV×2500 SEI LiC002
SEM images for LiCoO2 used for commercialized LIB
Crystal Structure of Spinel Li-xMxIsaIMn2l16dlo4l32 (Ga, zn f) 3V,4V) lLilsaMMn 16dlo4l32 (Lit, Mg+, Ga +, Zn+, Al,,etc) 3V,4V) Li]saIMMn2-x16dloal32e Ni2+, Cu, Co+, Cr3, Fe3, et (4V,5v) LilsalMn2li6aN O 4-v 32e Li]][ 32 N=F,S.3V,4) 9 Electrochemistry Laboratory for Functional Materials, Fudan University, June 28, 2004, 12IMLB, Japan
O (32e) Mn (16d) Li (8a) [Li]8a[Mn2 ]16d[NyO4-y ]32e (N = F, S. 3V, 4V) [Li1-xMx ]8a[Mn2 ]16d[O4 ]32e (Ga2+, Zn2+) (3V, 4V) [Li]8a[MxMn2-x ]16d[O4 ]32e (Ni2+, Cu2+, Co3+, Cr3+, Fe3+, etc) (4V, 5V) [Li]8a[MxMn2-x ]16d[O4 ]32e (Li+ , Mg2+, Ga2+, Zn2+, Al3+,etc) (3V, 4V) Crystal Structure of Spinel Electrochemistry Laboratory for Functional Materials, Fudan University, June 28, 2004, 12IMLB, Japan [Li]8a[Mn2 ]16d[O4 ]32e