The finite element melod I In FEM I We derived basis functions of arbitrary order for Hhe rod Model d ea du o (∝ +8=O peated Afdu v c I at boondsry or =)approxioetiov inside dement e Je(x=Z <×<B L=1 roberts D 4x《x≤x 1
②) Today: Use this approxiwoton to solve rite approximation witnin elenent"e" Elest et n ‖ Element boondary conditions 4(x9)=V从(x)=V AE du_ p AE du e XeX ax Ixf PvD( alternativeψyPPE (5E= q&dx+∑¥8 eA du s du dx 5d+∑s Ea du od &u dx= u&udx+2 Re su(xg)
Replace approxi tion inside dewet: e=2.4084=29)8 1 逃e=2g9du=2g8 dx i=1 d dx i=1 dx PVD 8-,FA2乙 e 鉴 已 6-g28d+2?的的8 [Q吩+2
4 SWr=SWe 6UK=S0°R 89[V-q ↓8UeG ke-=0 Stiffness Metrix X AE 器d K can be computed given elemeat type(n) 3nd A, e inside gement K∈R k symMetric Ke can be interpreted as the force needed on node y when a unit displacement is applied st
ngular Wl Force vedor R sec de dx +Pie