
Torsionmi@ser.eor.cn
Torsion mi@seu.edu.cn

Contents·IntroductiontoTorsion(扭转简介)·ExamplesofTorsionShafts(扭转轴示例)·SignConventionofTorque(扭矩符号规则)·TorqueDiagram(扭矩图)·Power&Torque(功率与扭矩)·InternalTorque&Stress-Static Indeterminacy(内力扭矩和应力一超静定概念的引入)·GeneralRelations Involved inDeformableSolids(分析可变形固体的几大基本关系)·Kinematics(几何关系)·Hooke'sLawforShearingDeformation(剪切变形物理关系)·StaticEquivalency(静力等效关系)·TorsionalStress&AngleofTwist(圆轴扭转的应力与扭转角)2
• Introduction to Torsion(扭转简介) • Examples of Torsion Shafts(扭转轴示例) • Sign Convention of Torque(扭矩符号规则) • Torque Diagram(扭矩图) • Power & Torque(功率与扭矩) • Internal Torque & Stress - Static Indeterminacy(内力扭矩和应力 -超静定概念的引入) • General Relations Involved in Deformable Solids(分析可变形固 体的几大基本关系) • Kinematics(几何关系) • Hooke’s Law for Shearing Deformation(剪切变形物理关系) • Static Equivalency(静力等效关系) • Torsional Stress & Angle of Twist(圆轴扭转的应力与扭转角) Contents 2

Contents·NonuniformTorsionofCircularShafts(圆轴的非均匀扭转)·Strength&StiffnessAnalysis(强度和刚度条件)·StrainEnergyand itsDensity(扭转应变能与应变能密度)·PolarMoments ofInertia&SectionModulus(圆截面的极惯性矩与扭转截面系数)·Theorem of Conjugate Shearing Stress(切应力互等定理)·StressesonObliqueCrossSections(扭转轴斜截面上的应力)·FailureModesofTorsionalShafts(扭转轴的失效模式)·StressConcentrations(扭转轴的应力集中)·TorsionofNoncircularMembers(非圆截面杆的扭转)·MembraneAnalogy(薄膜比拟)·TorsionofThin-walledOpenShafts(薄壁开口截面杆的扭转)·TorsionofThin-walledHollowShafts(薄壁空心截面杆的扭转)3
• Nonuniform Torsion of Circular Shafts(圆轴的非均匀扭转) • Strength & Stiffness Analysis(强度和刚度条件) • Strain Energy and its Density(扭转应变能与应变能密度) • Polar Moments of Inertia & Section Modulus(圆截面的极惯性矩 与扭转截面系数) • Theorem of Conjugate Shearing Stress(切应力互等定理) • Stresses on Oblique Cross Sections(扭转轴斜截面上的应力) • Failure Modes of Torsional Shafts(扭转轴的失效模式) • Stress Concentrations(扭转轴的应力集中) • Torsion of Noncircular Members(非圆截面杆的扭转) • Membrane Analogy(薄膜比拟) • Torsion of Thin-walled Open Shafts(薄壁开口截面杆的扭转) • Torsion of Thin-walled Hollow Shafts(薄壁空心截面杆的扭转) Contents 3

Introduction to TorsionGenerator. Turbine exerts torque T on theshaftRotationTurbine? Shaft transmits the torque tothe generator(a). Generator creates an equal andopposite torque T? Cross section remains planarInterestedin stresses andstrains of circular shafts(b)subjected to twisting couplesor torques4
• Interested in stresses and strains of circular shafts subjected to twisting couples or torques • Generator creates an equal and opposite torque T • Cross section remains planar • Turbine exerts torque T on the shaft Introduction to Torsion • Shaft transmits the torque to the generator 4

Introduction to TorsionTorsional Deformationofa Circular shaft.Radial lines remain straightLongitudinal linesduring deformationremainstraightbut spiral.Noticethedeformation oftherectangularelementwhenitissubjectedtoatorque
Introduction to Torsion 5

Examples of Torsion ShaftsPower generation shaftAutomotive power train shaftShip drive shaftTire shift driveComplex crank shaftScrewdriver6
6 Ship drive shaft Complex crank shaft Automotive power train shaft Screwdriver Power generation shaft Tire shift drive Examples of Torsion Shafts

Sign Convention of TorqueMeMeMe.MeMe: Sign (Positive) convention (right-hand rule): thumb - cross-section normal; rest fingers - torque
• Sign (Positive) convention (right-hand rule): thumb – crosssection normal; rest fingers – torque Sign Convention of Torque 7

Torque Diagram: Abscissa: cross-section position: Ordinate: torqueMeiMe2Me3Me4-Me4xMe1Mei+Me28
• Abscissa: cross-section position • Ordinate: torque Torque Diagram 8

Power & TorqueMotor. Transformation from electricpower to mechanical powerC motor power: P (kW); generated torqueM. (N-m):: n (rpm, revolutions per minute):1000 ×60 PPM。×2元n = P×1000×60= M。95492元nn: n (rps, revolutions per second):P1000 P159M,×2元n=P×1000=M2元nn· @ (rad/s, radian per second))PM。× =P×1000= M.=100009
• Transformation from electric power to mechanical power Power & Torque 9 1000 60 2π 1000 60 9549 2π e e P P M n P M n n • motor power: P (kW); generated torque: Me (N·m): • n (rpm, revolutions per minute): 1000 2π 1000 159 2π e e P P M n P M n n e e 1000 1000 P M P M • n (rps, revolutions per second): • ω (rad/s, radian per second):

Internal Torque & Stress - Static Indeterminacy. Net of the internal shearing stresses is aninternal torque, equal and opposite to theapplied torque,T=[pdF = p(t dA): Although the net torque due to the shearingstresses is known, the distribution of thedFstresses is not.: Distribution of shearing stresses is(a)statically indeterminate - must considerBshaft deformations.: Unlike the normal stress due to axial loadsthe distribution of shearing stresses due to(b)torsional loads can not be assumed uniform10
T dF dA • Net of the internal shearing stresses is an internal torque, equal and opposite to the applied torque, • Although the net torque due to the shearing stresses is known, the distribution of the stresses is not. • Unlike the normal stress due to axial loads, the distribution of shearing stresses due to torsional loads can not be assumed uniform. • Distribution of shearing stresses is statically indeterminate – must consider shaft deformations. Internal Torque & Stress - Static Indeterminacy 10