正在加载图片...
收敛圆与收敛半径由于一个级数在z平面上的任意一点,总是要么收敛,要么发散.因此 对于幂级数来说,就出现了这样的情况:在z平面上一部分点幂级数收敛,在另外一部分点幂级 数发散.这些收敛点与发散点之间存在一个分界线 ★根据Abel定理,这个分界线一定是圆.这个圆,就称为幂级数的收敛圆 ★收敛圆的圆心:2=a点 ★收敛圆的半径称为收敛半径 收敛半径可以是0.这时,收敛圆退化为一个点.除z=a点外,幂级数在全平面处处发散 收敛半径也可以是∞.这时收敛圆就是全平面.幂级数在全平面收敛,但∞点肯定是奇点 求幂级数的收敛半径的办法,常用的有两个 1.根据 Cauchy判别法,当 lim Icn(z-a) " I/<1 p lz-al <lim Icnll/n 7→C 时级数绝对收敛;当 lim cn(z-a)"/n> 1 Ep Iz-al 时级数发散.因此,幂级数∑cn(z-a)n的收敛半径是 R Cn//n 2.根据 d' Alembert判别法,如果 in/sn+1(2-a)x+1 l2-a| lim n+1 存在,则当 n+1 02-y|<1即|2-l<lm 时级数绝对收敛;当 n+1 1即|z-a|>im 时级数发散.因此,幂级数∑cn(z-a)的收敛半径是 这两个求收敛半径的公式各有优缺点, Cauchy公式是普遍成立的,而 d'Alembert公式 则是有条件的(要求极限 lim e/cn艹l存在)·但当后者能适用时,往往计算更简单些Wu Chong-shi §5.1 ❥ ✆ ✝ ✟ 2 ✠ ❦❧♠♥❦❧♦♣ qr✧s✖✗✺ z t✉✈✤✇①✧✼✥②✚▼③✽✾✥▼③❬❭✳●P✥ ❇r✕✖✗④⑤✥⑥⑦⑧⑨✦⑩✤❶❷❸✺ z t✉✈✧❹❺✼✕✖✗✽✾✥✺❻❪ ✧❹❺✼✕✖ ✗ ❬❭✳✦❼✽✾✼❡ ❬❭✼❽❾◗✺✧s❺❿➀✳ F ➁➂ Abel ■❝✥✦s❺❿➀✧■✚ ❁✳✦s ❁✥⑥➃✢✕✖✗✤ ❦❧♠ ✳ F ✽✾ ❁✤ ❁❂❸ z = a ✼✳ F ✽✾ ❁✤❃❄➃✢ ❦❧♦♣ ✳ ✽✾❃❄➄❀✚ 0 ✳✦ ❱ ✥ ✽✾ ❁➅➆✢✧s✼✳➇ z = a ✼❪ ✥✕✖✗✺➈t✉❫❫❬❭✳ ✽✾❃❄✭➄❀✚ ∞ ✳✦ ❱✽✾ ❁⑥✚➈t✉✳✕✖✗✺➈t✉✽✾✥➉ ∞ ✼➊■✚➋✼✳ ➌✕✖✗✤✽✾❃❄✤➍❛✥✙✲✤➎➏s❸ 1. ➁➂ Cauchy ➐➑❛✥❲ limn→∞ |cn(z − a) n | 1/n < 1 ❯ |z − a| < 1 limn→∞ |cn| 1/n ❱ ✖✗❆❇✽✾➒❲ limn→∞ |cn(z − a) n | 1/n > 1 ❯ |z − a| > 1 limn→∞ |cn| 1/n ❱ ✖✗❬❭✳●P✥✕✖✗ P∞ n=0 cn(z − a) n ✤ ✽✾❃❄✚ R = 1 limn→∞ |cn| 1/n = lim n→∞ 1 cn 1/n . 2. ➁➂ d’Alembert ➐➑❛✥✸✹ limn→∞ cn+1(z − a) n+1 cn(z − a) n = |z − a| limn→∞ cn+1 cn ◗✺✥✿❲ limn→∞ cn+1(z − a) n+1 cn(z − a) n < 1 ❯ |z − a| < limn→∞ cn cn+1 ❱ ✖✗❆❇✽✾➒❲ limn→∞ cn+1(z − a) n+1 cn(z − a) n > 1 ❯ |z − a| > limn→∞ cn cn+1 ❱ ✖✗❬❭✳●P✥✕✖✗ P∞ n=0 cn(z − a) n ✤ ✽✾❃❄✚ R = limn→∞ cn cn+1 . ➓➔→➣↔↕➙➛➜➝➞➟➠➡➢➤✳ Cauchy ➝➞➥➦➧➨➩➜✥➫ d’Alembert ➝➞ ➭➥➠➯➲➜ (➳ ➣➵➸ limn→∞ |cn/cn+1| ➺➻) ✳➼ ➽➾➚➪➶➹➘✥➴➴➷➬➮ ➱✃❐✳
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有