正在加载图片...
张城等:基于霍尔-埃鲁特电解法制备铝合金技术研究进展 ·843· 成-性质、多元合金共电沉积对合金成分偏析/偏聚 by electrolysis in fluoride salt system.Chin Rare Earths,2014, 及电流效率的影响等方面的机理解析和量化模型, 35(2):99 (陈宇听.氟化物体系电解稀土氧化物制备稀土金属研究 以及大数据、先进模拟计算、性能预测等方法与电解 稀土,2014,35(2):99) 工艺参数的协同优化,均有待继续深入研究 [13]Feng N X.Aluminium Electrolysis.Beijing:Chemical Industry 大部分研究者对H-H法制备铝基合金技术的 Press,2008 发展前景保持乐观和信心.一百多年以来,沿用霍 (冯乃祥.铝电解.北京:化学工业出版社,2008) 尔和埃鲁特发明的技术原型,超级大规模铝电解槽 [14]Kan H M,Ban Y G,Qiu Z X,et al.Liquidus temperature, density and electrical conductivity of electrolyte for aluminum 不断成功出现.而进一步的拓展创新,是利用这些 electrolysis.Chin J Process Eng,2007,7(3):604 超大型槽的技术优势,大规模、低成本、精准制备高 (阚洪敏,班允刚,邱竹贤,等.铝电解质体系初品温度、密 性能铝合金.在破解上述技术问题之后,这一前景 度和电导率.过程工程学报,2007,7(3):604) 亦随之不远. [15]Liu D R,Yang Z H,Li W X,et al.Research on potassium cryo- lite for low temperature aluminium electrolysis.Light Met,2009 参考文献 (10):18 [1]Grjotheim K.Aluminium Electrolysis:Fundamentals of the Hall- (刘东任,杨占红,李旺兴,等.钾冰品石低温电解质研究现 Heroult Process.3rd Ed.Dusseldorf:Aluminum-Verlag,2002 状.轻金属,2009(10):18) [2]Qiu Z X.Prebaked Aluminium.Beijing:Metallurgical Industry [16]Apisarov A,Dedyukhin A,Redkin A,et al.Physical-chemical Pres5,2006 properties of the KF-NaF-AlF3 molten system with low cryolite (邱竹贤.预焙槽炼铝.北京:冶金工业出版社,2006) ratio /TMS 2009 Annual Meeting and Exhibition.San Francis- [3]Liu Y X,Li J.Morden Alumuniun Electrolysis.Beijing:Metallur- co,2009:401 gical Industry Press,2008 [17]Yang J,Graczyk D G,Wunsch C,et al.Alumina solubility in (刘业翔,李劼.现代铝电解.北京:冶金工业出版社,2008) KF-AlF,-based low-temperature electrolyte system /TMS 2007 [4]Tang D X,Liu YJ,Zhang H J.The Rare Earth Metal Materials. Annual Meeting and Exhibition.Odando,2007:537 Beijing:Metallurgical Industry Press,2011 [18]Liu Q C.Preparation of Al-Sc Alloys by Electrolysis in KF-AlF,- (唐定骧,刘余九,张洪杰.稀土金属材料.北京:治金工业出 Sc20;Melts System[Dissertation].Beijing:University of Science 版社,2011) and Technology Beijing,2012 [5]Wang X Y,Qiu S T,Zou Z S,et al.Study on steel deoxidation (刘翘楚.KF-AIF,-SC20,体系直接电解制备铝钪合金基础 with Al-Ca compound alloy.Chin J Eng.2017.39(5):702 研究[学位论文].北京:北京科技大学,2012) (王晓英,仇圣桃,邹宗树,等.A-Ca复合合金钢水脱氧机 [19]Liu Q S,Xue J L,Zhu J,et al.Effects of additives on the sodi- 理的研究.工程科学学报,2017,39(5):702) um penetration and expansion of carbon-based cathodes during [6] Kojima Y.Project of platform science and technology for advanced aluminum electrolysis.J Univ Sci Technol Beijing,2008,30 magnesium alloys.Mater Trans,2001,2(7):1154 (4):403 [7]Park G H,Kim J T,Park H J,et al.Development of lightweight (刘庆生,薛济来,朱骏,等.添加剂对铝电解炭基阴极钠渗 Mg-Li-Al alloys with high specific strength.J Alloys Compd, 透膨胀过程的形响.北京科技大学学报,2008,30(4):403) 2016,680:116 [20]Tian Z L,Lai Y Q,Yin G,et al.Progress on low temperature [8]Abu-Dheir N,Khraisheh M,Saito K,et al.Silicon morphology aluminium electrolysis.Nonferrous Met(Extract Metall),2004 modification in the eutectic Al-Si alloy using mechanical mold vi- (5):26 bration.Mater Sci Eng A,2005,393(1-2):109 (田忠良,赖延清,银瑰,等.低温铝电解研究进展有色金 [9]Xiu Z Y,Chen G Q.Wang X F,et al.Microstructure and per- 属(冶炼部分),2004(5):26) formance of Al-Si alloy with high Si content by high temperature [21]Chen JS,Li DX.Molten salts properties and electrolyte compo- diffusion treatment.Trans Nonferrous Met Soc China,2010,20 sitions with same solubility of alumina at 20C above liquidus of (11):2134 aluminium electrolyte for Nas AlF-AlF3-LiF-MgF2-CaF2 sys- [10]Gao X Z,Liu T H,Li J K,et al.Study and practice of making tem.Light Met,2009(1):22 aluminum and titanium alloy by aluminum electrolysis.Light (陈建设,李德样.铝电解质Na:AlF。-AlFg-Lif-MgF2-CaF2 4Md,2006(5):48 系初品温度上20℃的熔盐性质和等溶成分.轻金属,2009 (高希柱,刘同湖,李景坤,等.电解生产铝钛合金研究与实 (1):22) 践.轻金属,2006(5):48) [22]Xu H,Liu W P,Dong R.et al.Study on solubility of Mgo in [11]Yang S,Yang G Q.Production of Aluminum Alloys by Electroly- melt salt.Nonferrous Met Extract Metall),2011(1):20 sis.Beijing:Metallurgical Industry Press,2010 (徐徽,刘卫平,董瑞,等.氧化镁在熔盐中溶解度的研究 (杨昇,杨冠群.电解法生产铝合金.北京:治金工业出版 有色金属(冶炼部分),2011(1):20) 社,2010) [23]Wu W Y,Sun J Z,Hai L,et al.Solubility of Nd2O in fluoride [12]Chen Y X.Research progress of preparation of rare earth metals molten salt.Chin Rare Earths,1991,12(3):34张 城等: 基于霍尔鄄鄄埃鲁特电解法制备铝合金技术研究进展 成鄄鄄性质、多元合金共电沉积对合金成分偏析/ 偏聚 及电流效率的影响等方面的机理解析和量化模型, 以及大数据、先进模拟计算、性能预测等方法与电解 工艺参数的协同优化,均有待继续深入研究. 大部分研究者对 H鄄鄄 H 法制备铝基合金技术的 发展前景保持乐观和信心. 一百多年以来,沿用霍 尔和埃鲁特发明的技术原型,超级大规模铝电解槽 不断成功出现. 而进一步的拓展创新,是利用这些 超大型槽的技术优势,大规模、低成本、精准制备高 性能铝合金. 在破解上述技术问题之后,这一前景 亦随之不远. 参 考 文 献 [1] Grjotheim K. Aluminium Electrolysis: Fundamentals of the Hall鄄 H佴roult Process. 3rd Ed. Dusseldorf: Aluminum鄄Verlag, 2002 [2] Qiu Z X. Prebaked Aluminium. Beijing: Metallurgical Industry Press, 2006 (邱竹贤. 预焙槽炼铝. 北京: 冶金工业出版社, 2006) [3] Liu Y X, Li J. Morden Alumuniun Electrolysis. Beijing: Metallur鄄 gical Industry Press, 2008 (刘业翔, 李劼. 现代铝电解. 北京: 冶金工业出版社, 2008) [4] Tang D X, Liu Y J, Zhang H J. The Rare Earth Metal Materials. Beijing: Metallurgical Industry Press, 2011 (唐定骧, 刘余九, 张洪杰. 稀土金属材料. 北京:冶金工业出 版社, 2011) [5] Wang X Y, Qiu S T, Zou Z S, et al. Study on steel deoxidation with Al鄄鄄Ca compound alloy. Chin J Eng, 2017, 39(5): 702 (王晓英, 仇圣桃, 邹宗树, 等. Al鄄鄄 Ca 复合合金钢水脱氧机 理的研究. 工程科学学报, 2017, 39(5): 702) [6] Kojima Y. Project of platform science and technology for advanced magnesium alloys. Mater Trans, 2001, 42(7): 1154 [7] Park G H, Kim J T, Park H J, et al. Development of lightweight Mg鄄鄄 Li鄄鄄 Al alloys with high specific strength. J Alloys Compd, 2016, 680: 116 [8] Abu鄄Dheir N, Khraisheh M, Saito K, et al. Silicon morphology modification in the eutectic Al鄄鄄 Si alloy using mechanical mold vi鄄 bration. Mater Sci Eng A, 2005, 393(1鄄2): 109 [9] Xiu Z Y, Chen G Q, Wang X F, et al. Microstructure and per鄄 formance of Al鄄鄄 Si alloy with high Si content by high temperature diffusion treatment. Trans Nonferrous Met Soc China, 2010, 20 (11): 2134 [10] Gao X Z, Liu T H, Li J K, et al. Study and practice of making aluminum and titanium alloy by aluminum electrolysis. Light Met, 2006(5): 48 (高希柱, 刘同湖, 李景坤, 等. 电解生产铝钛合金研究与实 践. 轻金属, 2006(5): 48) [11] Yang S, Yang G Q. Production of Aluminum Alloys by Electroly鄄 sis. Beijing: Metallurgical Industry Press, 2010 (杨昇, 杨冠群. 电解法生产铝合金. 北京: 冶金工业出版 社, 2010) [12] Chen Y X. Research progress of preparation of rare earth metals by electrolysis in fluoride salt system. Chin Rare Earths, 2014, 35(2): 99 (陈宇昕. 氟化物体系电解稀土氧化物制备稀土金属研究. 稀土, 2014, 35(2): 99) [13] Feng N X. Aluminium Electrolysis. Beijing: Chemical Industry Press, 2008 (冯乃祥. 铝电解. 北京: 化学工业出版社, 2008) [14] Kan H M, Ban Y G, Qiu Z X, et al. Liquidus temperature, density and electrical conductivity of electrolyte for aluminum electrolysis. Chin J Process Eng, 2007, 7(3): 604 (阚洪敏, 班允刚, 邱竹贤, 等. 铝电解质体系初晶温度、密 度和电导率. 过程工程学报, 2007, 7(3): 604) [15] Liu D R, Yang Z H, Li W X, et al. Research on potassium cryo鄄 lite for low temperature aluminium electrolysis. Light Met, 2009 (10): 18 (刘东任, 杨占红, 李旺兴, 等. 钾冰晶石低温电解质研究现 状. 轻金属, 2009(10): 18) [16] Apisarov A, Dedyukhin A, Redkin A, et al. Physical鄄chemical properties of the KF鄄鄄 NaF鄄鄄 AlF3 molten system with low cryolite ratio / / TMS 2009 Annual Meeting and Exhibition. San Francis鄄 co, 2009: 401 [17] Yang J, Graczyk D G, Wunsch C, et al. Alumina solubility in KF鄄鄄AlF3 鄄鄄based low鄄temperature electrolyte system / / TMS 2007 Annual Meeting and Exhibition. Orlando, 2007: 537 [18] Liu Q C. Preparation of Al鄄Sc Alloys by Electrolysis in KF鄄鄄AlF3 鄄鄄 Sc2 O3 Melts System[Dissertation]. Beijing: University of Science and Technology Beijing, 2012 (刘翘楚. KF鄄鄄AlF3 鄄鄄 Sc2O3 体系直接电解制备铝钪合金基础 研究[学位论文]. 北京: 北京科技大学, 2012) [19] Liu Q S, Xue J L, Zhu J, et al. Effects of additives on the sodi鄄 um penetration and expansion of carbon鄄based cathodes during aluminum electrolysis. J Univ Sci Technol Beijing, 2008, 30 (4): 403 (刘庆生, 薛济来, 朱骏, 等. 添加剂对铝电解炭基阴极钠渗 透膨胀过程的影响. 北京科技大学学报, 2008, 30(4): 403) [20] Tian Z L, Lai Y Q, Yin G, et al. Progress on low temperature aluminium electrolysis. Nonferrous Met ( Extract Metall), 2004 (5): 26 (田忠良, 赖延清, 银瑰, 等. 低温铝电解研究进展. 有色金 属(冶炼部分), 2004(5): 26) [21] Chen J S, Li D X. Molten salts properties and electrolyte compo鄄 sitions with same solubility of alumina at 20 益 above liquidus of aluminium electrolyte for Na3 AlF6 鄄鄄 AlF3 鄄鄄 LiF鄄鄄 MgF2 鄄鄄 CaF2 sys鄄 tem. Light Met, 2009(1): 22 (陈建设, 李德祥. 铝电解质 Na3AlF6 鄄鄄AlF3 鄄鄄LiF鄄鄄 MgF2 鄄鄄 CaF2 系初晶温度上 20 益 的熔盐性质和等溶成分. 轻金属, 2009 (1): 22) [22] Xu H, Liu W P, Dong R, et al. Study on solubility of MgO in melt salt. Nonferrous Met (Extract Metall), 2011(1): 20 (徐徽, 刘卫平, 董瑞, 等. 氧化镁在熔盐中溶解度的研究. 有色金属(冶炼部分), 2011(1): 20) [23] Wu W Y, Sun J Z, Hai L, et al. Solubility of Nd2O3 in fluoride molten salt. Chin Rare Earths, 1991, 12(3): 34 ·843·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有