正在加载图片...
4.计算下列无界函数的反常积分(发散也是一种计算结果) dx (4) (2-xy1 sIn d x tan x 解(1)∫ Joe dI- (2) x√-1n2x d(nx)= arcsin(n x)s2° In' (3)令√x-1=1,则 (4)令√1-x=1,则 dx =2 (5)∫snd=Csin+ snd=-2m=-)=2(s 由于m2(c0)极限不存在,所以积分sina发散;同理积分 sin -dx也发散 (6)令√anx=t,再利用上面习题3(9),得到 dx=2 dt丌⒋ 计算下列无界函数的反常积分(发散也是一种计算结果): ⑴ x x dx 1 0 2 1 − ∫ ; ⑵ 1 1 1 2 x x dx − ∫ ln e ; ⑶ x x dx − ∫ 1 1 2 ; ⑷ 1 2 1 0 1 ( ) − − ∫ x x dx ; ⑸ 1 1 1 3 2 1 x x sin dx −∫ ; ⑹ ∫ 2 0 tan 1 π dx x ; 解(1) x x dx 1 0 2 1 − ∫ ∫ − − = − 1 0 2 2 1 (1 ) 2 1 x d x 1 0 2 = (− 1− x ) = 1。 (2) 1 1 1 2 x x dx − ∫ ln e ∫ − = e 1 2 (ln ) 1 ln 1 d x x = = e x 1 arcsin(ln ) 2 π 。 (3)令 x −1 = t ,则 x x dx − ∫ 1 1 2 = ∫ + = 1 0 2 2 (1 t )dt 3 8 。 (4)令 1− x = t ,则 1 2 1 0 1 ( ) − − ∫ x x dx ∫ = + = 1 0 2 1 2 t dt 2 π 。 (5) 1 1 1 3 2 1 x x sin dx −∫ ∫− = 0 1 3 2 1 sin 1 dx x x + ∫ 1 0 3 2 1 sin 1 dx x x 。 ∫ 1 0 3 2 1 sin 1 dx x x = − ∫ 1 0 2 2 ) 1 ( 1 sin 2 1 x d x 1 0 2 ) 1 (cos 2 1 = + x , 由于 ) 1 (cos 2 1 lim 2 x→0+ x 极限不存在,所以积分∫ 1 0 3 2 1 sin 1 dx x x 发散;同理积分 ∫− 0 1 3 2 1 sin 1 dx x x 也发散。 (6)令 tan x = t,再利用上面习题 3(9),得到 ∫ 2 0 tan 1 π dx x ∫ +∞ + = 0 4 1 2 t dt 2 π = 。 270
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有