正在加载图片...
5. Second-order filter (including two dynamic elements) 5. Second-order filter(including two dynamic elements) About Q factor(series resonant cireuit) About Q factor(Parallel Resonant Circuit) ORC vu∞)d VGo) “节+ -=-+ G.+G. Conclusion of the resonance frequency:w. without changing the structure of the resonant cireuit. the load or th Q factor: Q introduction of load or the factor:Q="G-L lower the Q factor of resonant with internal loss will lower the Q Content Laplace Transform -- Basic property 32-3 Solving the linear circuits using Laplace Transform Unique F(s)+f(t) A one-to-one relat L. Transform of basic laws(operational form) 2. Transform of branches(Vs, Is, R, L, C) Linearity a,f,(t)+a2f2(t)=a,F(s)+a,2F2(s) 3. Transform of passive single-port network eg-41 Apace t ransom or oam s linearity --the general operational form of ohm's Law (V(Sz(s)I(s)) v(n)=(s)(n)=I(s)R(n):R(s) 4. Transform of active single-port network v()=Ri(D)=(s)=RI() 2.3: Laplace Transform of KCL, KVL 5. Solution: transform and inverse transform Ifi1(t)=I1(s)L2(t)=12(s)… -4 S-domain description of the network transfer function L∑(t)∑工(s) L Definition(H(S)Y(S)F(S))2. Characteristic ∑1(t)=0[e∑()=0 Laplace Transform- Basic property evi Laplace Transform-- Basic property Differentiation f(t)=sF(s)-f(o) f(t)=sF(s)-f(0.) I(s)=Csv(s)-Cv(o. vit=L di(t transform v(s)=LsI(s)-LI(0.) v(o) V(s) =0+aao(它20)北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 5. Second-order filter (including two dynamic elements) VR(jω) + - Ii(jω) C R L V(jω) + - resonance frequency: Q factor: resonance frequency: Q factor: LC 1 ω0 = ω RC 1 R ω L Q 0 0 = = L 0 L L R ω L R → Q = ω R C 1 R Q 0 C C → C = About Q factor (series resonant circuit) : Conclusion: Without changing the structure of the resonant circuit, the introduction of load or the source with internal loss will lower the Q factor of resonant circuit. C L L C Q 1 Q 1 Q 1 R = R + R → = + If the loss of resonant circuit is only caused by the capacitors and inductors, then: 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 5. Second-order filter (including two dynamic elements) About Q factor (Parallel Resonant Circuit) : Conclusion: Without changing the structure of the resonant circuit, the introduction of load or the source with internal loss will lower the Q factor of resonant circuit. ω G L 1 G Q 0 L L → L = C 0 C C G ω C G → Q = resonance frequency: Q factor: resonance frequency: Q factor: LC 1 ω0 = ω GL 1 G ω C Q 0 0 = = C L L C Q 1 Q 1 Q 1 G = G + G → = + If the loss of resonant circuit is only caused by the capacitors and inductors, then: ( ) ( ) ( ) ( ) jωC Z jω R jωL V Z jω I jω H jω 1 1 = + + = = V(jω) I(jω) C G L + - 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content §2-3 Solving the linear circuits using Laplace Transform 1. Transform of basic laws (operational form) 2. Transform of branches (Vs,Is,R,L,C) 3. Transform of passive single-port network --the general operational form of Ohm’s Law (V(S)=Z(S)I(S)) 4. Transform of active single-port network -- operational form of Thevenin's theorem and Norton’s theorem /Voc(S),Isc(S),Zeq(S) 5. Solution: transform and inverse transform §2-4 S-domain description of the network transfer function 1. Definition (H(S)=Y(S)/F(S)) 2. Characteristic 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 e.g.2:Laplace Transform of Ohm’s Law v t Ri t () () = V s RI s () () = vt V s () ( ) = it I s () ( ) = Ri t RI s () () = e.g.3:Laplace Transform of KCL、KVL If …… it Is 1 1 ( ) = ( ) it Is 2 2 ( ) = ( ) Linearity Linearity ∑it Is i i ( ) =∑ ( ) ∑it 0 i ( ) = Unique Unique ∑Ii(s) = 0 Linearity Linearity Unique Unique *** Unique F(s)↔ f(t) A one-to-one relationship Linearity α f (t ) α f (t ) () α F s α F (s) 1 1 + 2 2 = 1 1 + 2 2 Laplace Transform -- Basic property Review 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 + CS - I( ) s V( ) s ( ) s V 0- + - () () ( ) I s = CsV s − CV 0- + - I( ) s V( ) s CS ( ) CV 0- () ( ) ( ) 0- f' t = sF s − f transform transform Equivalent Equivalent ( ) ( ) dt dV t I t = C + - V( ) t I( ) t ( ) V 0- C + - I( ) t ( ) V 0- + - V( ) t C Equivalent Equivalent Laplace Transform -- Basic property *** Differentiation transform transform Review ∫ = + t i t d t C v t v 0 ( ) ( ) 1 ( ) (0) (t≥0) 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 ( ) ( ) dt dI t V t = L + - V(t) I(t) ( ) I 0- L + V(t) - I(t) ( ) I 0- L Equivalent Equivalent + - ( ) s I 0- I( ) s LS V( ) s () () ( ) V s = LsI s −LI 0- + LS - I( ) s ( ) LI 0- V( ) s - + transform transform ( ) ( ) ( ) 0- f' t = sF s − f transform transform Equivalent Equivalent Laplace Transform -- Basic property *** Differentiation Review ∫ = + t v t d t L i t I 0 ( ) ( ) 1 ( ) (0) (t≥0)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有