正在加载图片...
1104 工程科学学报,第42卷.第9期 原位生长或者在与金属氧化物进行掺杂,将金属 lithium -oxygen batteries based on novel catalytic nanofiber 氧化物与MOFs结合.利用MOFs表面具有较高 membrane and controllable screen-printed method.Mater Chem 的比表面积,同时MOFs表面具有很多的开放位 A,2018,6(43):21458 [10]Zhang X L,Fan W,Zhao S Y,et al.An efficient,bifunctional 点可以和目标气体进行结合,从而改变传感材料 catalyst for lithium-oxygen batteries obtained through tuning the 内部的电子分布状态,达到电阻传感的效果.相比 exterior Co/Co"ratio of Coo,on N-doped carbon nanofibers. 于两种MOFs的结合方式,第一种方式由于存在 Catal Sci Technol,2019,9(8):1998 贵重金属催化剂,所以可以增加传感材料的响应 [11]Yang W,Li N W,Zhao S Y,et al.A breathable and screen-printed 值.第二种方式的优点在于利用MOFs表面具有 pressure sensor based on nanofiber membranes for electronic 更多开放位点,所以对目标气体具有更高的选择 skins.Ady Mater Technol,2018,3(2):1700241 性.在纺织品与MOFs结合部分,由于电阻传感材 [12]Koo WT,Choi S J,Kim S J,et al.Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex 料本身需要具有一定的导电性,而一般常见的MOFs catalysts on oxide nanofiber scaffold toward superior gas sensors 材料导电性均较差,并且提高纺织品的导电性在 J Am Chem Soc,.2016,138(40):13431 工业上并不实用.所以需要寻找一种导电的MOFs [13]Koo W T,Jang J S,Choi S J,et al.Metal-organic framework 材料,其中HHTP和HATP对于NO、H2S和H2O均 templated catalysts:dual sensitization of PdO-ZnO composite on 表现出较强的响应值.将传感器与纺织品结合用 hollow SnOz nanotubes for selective acetone sensors.ACS Appl 于智能穿戴领域,在未来将会有巨大的应用价值 Mater Interfaces,2017,9(21):18069 第三部分是将碳纳米管纤维与MOFs材料进行结 [14]Wu X N,Xiong S S,Gong Y,et al.MOF-SMO hybrids as a HS 合,碳纳米管材料的特点就是在纳米尺度可以交 sensor with superior sensitivity and selectivity.Sensors Actuat B: Chem,2019,292:32 叉接触,具有较好的机械特性和导电性,所以用于 [15]Talin AA,Centrone A,Ford A C,et al.Tunable electrical 柔性电阻传感材料具有一定的优势, conductivity in metal-organic framework thin film devices. Science,2014,343(6166:66 参考文献 [16]Shi J D.Liu S,Zhang L S,et al.Smart textile-integrated [1]Zhao JJ,Losego M D.Lemaire P C,et al.Highly adsorptive, microelectronic systems for wearable applications.Adv Mater, MOF-functionalized nonwoven fiber mats for hazardous gas 2020,32(5):1901958 capture enabled by atomic layer deposition.Adv Mater Interfaces, [17]Zhang YY,Yuan S,Feng X,et al.Preparation of nanofibrous 2014,1(4):1400040 metal-organic framework filters for efficient air pollution control.J [2]Koo W T,Jang J S,Kim I D.Metal-organic frameworks for Am Chem Soc,2016,138(18):5785 chemiresistive sensors.Chem,2019.5(8):1938 [18]Bradshaw D,Garai A,Huo J.Metal-organic framework growth at [3] Alrammouz R,Podlecki J,Abboud P,et al.A review on flexible functional interfaces:thin films and composites for diverse gas sensors:from materials to devices.Sensors Actuat A-Phys, applications.Chem Soc Rev,2012,41(6):2344 2018,284:209 [19]Denny Jr M S,Moreton J C,Benz L,et al.Metal -organic [4] Yao M S,Tang W X,Wang G E,et al.MOF thin film-coated frameworks for membrane-based separations.Nat Rev Mater, metal oxide nanowire array:significantly improved chemiresistor 2016,1(12):16078 sensor performance.Adv Mater,2016,28(26):5229 [20]Lopez-Maya E,Montoro C,Rodriguez-Albelo L M,et al. [5]Zhan S,Li D M.Liang S F,et al.A novel flexible room Textile/metal-organic-framework composites as self-detoxifying temperature ethanol gas sensor based on SnO doped poly- filters for chemical-warfare agents.Angew Chem Int Ed,2015, diallyldimethylammonium chloride.Sensors,2013,13(4):4378 54(23):6790 [6]Tonezzer M,Lacerda R G.Zinc oxide nanowires on carbon [21]Liu J X,Woll C.Surface-supported metal-organic framework thin microfiber as flexible gas sensor.Physica E,2012,44(6):1098 films:fabrication methods,applications,and challenges.Chem Soc [7]Lin J,Liang F.Lu X Y,et al.Modeling and designing fault- Rem,2017,46(19:5730 tolerance mechanisms for MPI-based mapreduce data computing [22]Li M Y,Dinca M.Reductive electrosynthesis of crystalline metal- framework /2015 IEEE First International Conference on Big organic frameworks.JAm Chem Soc,2011,133(33):12926 Data Computing Service and Applications.Redwood City,2015: [23]Ozer RR,Hinestroza J P.One-step growth of isoreticular 176 luminescent metal-organic frameworks on cotton fibers.RSC Adv, [8]Yang D J,Kamienchick I,Youn D Y,et al.Ultrasensitive and 2015,5(25):19400 highly selective gas sensors based on electrospun SnO,nanofibers [24]Zhang J L,Ar D,Yu X J,et al.Patterned deposition of metal- modified by Pd loading.Ady Funct Mater,2010,20(24):4258 organic frameworks onto plastic,paper,and textile substrates by [9]Zhang X L,Fan W,Li H,et al.Extending cycling life of inkjet printing of a precursor solution.Adv Mater,2013,25(33):原位生长或者在与金属氧化物进行掺杂,将金属 氧化物与 MOFs 结合. 利用 MOFs 表面具有较高 的比表面积,同时 MOFs 表面具有很多的开放位 点可以和目标气体进行结合,从而改变传感材料 内部的电子分布状态,达到电阻传感的效果. 相比 于两种 MOFs 的结合方式,第一种方式由于存在 贵重金属催化剂,所以可以增加传感材料的响应 值. 第二种方式的优点在于利用 MOFs 表面具有 更多开放位点,所以对目标气体具有更高的选择 性. 在纺织品与 MOFs 结合部分,由于电阻传感材 料本身需要具有一定的导电性,而一般常见的 MOFs 材料导电性均较差,并且提高纺织品的导电性在 工业上并不实用. 所以需要寻找一种导电的 MOFs 材料,其中 HHTP 和 HATP 对于 NO、H2S 和 H2O 均 表现出较强的响应值. 将传感器与纺织品结合用 于智能穿戴领域,在未来将会有巨大的应用价值. 第三部分是将碳纳米管纤维与 MOFs 材料进行结 合,碳纳米管材料的特点就是在纳米尺度可以交 叉接触,具有较好的机械特性和导电性,所以用于 柔性电阻传感材料具有一定的优势. 参    考    文    献 Zhao  J  J,  Losego  M  D,  Lemaire  P  C,  et  al.  Highly  adsorptive, MOF-functionalized  nonwoven  fiber  mats  for  hazardous  gas capture enabled by atomic layer deposition. Adv Mater Interfaces, 2014, 1(4): 1400040 [1] Koo  W  T,  Jang  J  S,  Kim  I  D.  Metal-organic  frameworks  for chemiresistive sensors. Chem, 2019, 5(8): 1938 [2] Alrammouz R, Podlecki J, Abboud P, et al. A review on flexible gas  sensors:  from  materials  to  devices. Sensors Actuat A-Phys, 2018, 284: 209 [3] Yao  M  S,  Tang  W  X,  Wang  G  E,  et  al.  MOF  thin  film-coated metal  oxide  nanowire  array:  significantly  improved  chemiresistor sensor performance. Adv Mater, 2016, 28(26): 5229 [4] Zhan  S,  Li  D  M,  Liang  S  F,  et  al.  A  novel  flexible  room temperature  ethanol  gas  sensor  based  on  SnO2 doped  poly￾diallyldimethylammonium chloride. Sensors, 2013, 13(4): 4378 [5] Tonezzer  M,  Lacerda  R  G.  Zinc  oxide  nanowires  on  carbon microfiber as flexible gas sensor. Physica E, 2012, 44(6): 1098 [6] Lin  J,  Liang  F,  Lu  X  Y,  et  al.  Modeling  and  designing  fault￾tolerance  mechanisms  for  MPI-based  mapreduce  data  computing framework  //  2015 IEEE First International Conference on Big Data Computing Service and Applications.  Redwood  City,  2015: 176 [7] Yang  D  J,  Kamienchick  I,  Youn  D  Y,  et  al.  Ultrasensitive  and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater, 2010, 20(24): 4258 [8] [9] Zhang  X  L,  Fan  W,  Li  H,  et  al.  Extending  cycling  life  of lithium –oxygen  batteries  based  on  novel  catalytic  nanofiber membrane and controllable screen-printed method. J Mater Chem A, 2018, 6(43): 21458 Zhang  X  L,  Fan  W,  Zhao  S  Y,  et  al.  An  efficient,  bifunctional catalyst for lithium –oxygen batteries obtained through tuning the exterior  Co2+/Co3+ ratio  of  CoOx on  N-doped  carbon  nanofibers. Catal Sci Technol, 2019, 9(8): 1998 [10] Yang W, Li N W, Zhao S Y, et al. A breathable and screen-printed pressure  sensor  based  on  nanofiber  membranes  for  electronic skins. Adv Mater Technol, 2018, 3(2): 1700241 [11] Koo W T, Choi S J, Kim S J, et al. Heterogeneous sensitization of metal-organic  framework  driven  metal@metal  oxide  complex catalysts on oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc, 2016, 138(40): 13431 [12] Koo  W  T,  Jang  J  S,  Choi  S  J,  et  al.  Metal-organic  framework templated catalysts: dual sensitization of PdO–ZnO composite on hollow  SnO2 nanotubes  for  selective  acetone  sensors. ACS Appl Mater Interfaces, 2017, 9(21): 18069 [13] Wu X N, Xiong S S, Gong Y, et al. MOF–SMO hybrids as a H2S sensor with superior sensitivity and selectivity. Sensors Actuat B: Chem, 2019, 292: 32 [14] Talin  A  A,  Centrone  A,  Ford  A  C,  et  al.  Tunable  electrical conductivity  in  metal-organic  framework  thin  film  devices. Science, 2014, 343(6166): 66 [15] Shi  J  D,  Liu  S,  Zhang  L  S,  et  al.  Smart  textile-integrated microelectronic  systems  for  wearable  applications. Adv Mater, 2020, 32(5): 1901958 [16] Zhang  Y  Y,  Yuan  S,  Feng  X,  et  al.  Preparation  of  nanofibrous metal-organic framework filters for efficient air pollution control. J Am Chem Soc, 2016, 138(18): 5785 [17] Bradshaw D, Garai A, Huo J. Metal-organic framework growth at functional  interfaces:  thin  films  and  composites  for  diverse applications. Chem Soc Rev, 2012, 41(6): 2344 [18] Denny  Jr  M  S,  Moreton  J  C,  Benz  L,  et  al.  Metal –organic frameworks  for  membrane-based  separations. Nat Rev Mater, 2016, 1(12): 16078 [19] López-Maya  E,  Montoro  C,  Rodríguez-Albelo  L  M,  et  al. Textile/metal-organic-framework  composites  as  self-detoxifying filters  for  chemical-warfare  agents. Angew Chem Int Ed,  2015, 54(23): 6790 [20] Liu J X, Wöll C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem Soc Rev, 2017, 46(19): 5730 [21] Li M Y, Dincă M. Reductive electrosynthesis of crystalline metal￾organic frameworks. J Am Chem Soc, 2011, 133(33): 12926 [22] Ozer  R  R,  Hinestroza  J  P.  One-step  growth  of  isoreticular luminescent metal–organic frameworks on cotton fibers. RSC Adv, 2015, 5(25): 19400 [23] Zhang  J  L,  Ar  D,  Yu  X  J,  et  al.  Patterned  deposition  of  metal￾organic  frameworks  onto  plastic,  paper,  and  textile  substrates  by inkjet printing of a precursor solution. Adv Mater, 2013, 25(33): [24] · 1104 · 工程科学学报,第 42 卷,第 9 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有