正在加载图片...
·222· 智能系统学报 第14卷 1.0 robots[J.Robot,.2017,39(4:439-448 [4]STOLT A,LINDEROTH M,ROBERTSON A,et al.Ro- 0.5 botic assembly of emergency stop buttons[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.Tokyo,Japan,2013. [5]GUIZZO E,ACKERMAN E.How rethink robotics built its new Baxter robot worker[R].IEEE Spectrum,2012. 0.5 [6]WANG Kesheng,LIEN T K.The structure design and kin- ematics of a robot manipulator-I.Theory[J].Robotics and -1.0 -0.5 0 0.5 1.0 computer-integrated manufacturing,1989,5(2/3): x/m 153-158. (c)Yumi [7]HOLLERBACH J M.Optimum kinematic design for a 图7工作空间xz截面分布 seven degree of freedom manipulator[C]//Proceedings of Fig.7 Working space x-z cross section distribution the Robotics Research:The Second International Symposi- 4结束语 um.Cambridge,USA,1985:215-222 [8]归彤,原培章.7自由度机器人的图谱问题几.机器人, 本文以协作机器人构型为研究目标,首先通 1991,13(4):27-30. 过对现有的典型协作机器人的构型进行了对比分 GUI Tong,YUAN Peizhang.An atlas of 7-DOF robot ma- 析,通过构型间的演化过程发现偏置的存在是导 nipulators[J].Robot,1991,13(4):27-30. 致协作机器人构型差异的重要因素。然后对偏置 [9]赵占芳.七自由度机器人机构的选型).机器人,1989 进行了定义,并将其分为S型和Y型,最终得到 31):53-56. 了含有偏置的协作机器人基本构型。最后对iwa、 ZHAO Zhanfang.The selection of seven degrees of free- Sawyer、Yumi3种构型进行对比分析,得到不同的 dom robot mechanism[J].Robot,1989,3(1):53-56. 偏置对性能指标的影响不同。其中,偏置降低机 [10]STEVENSON R,SHIRINZADEH B,ALICI G.Singular- 器人的全局性能、工作空间体积性能,但能够提 ity avoidance and aspect maintenance in redundant ma- 高机器人的灵活工作空间性能,该分析研究对后 nipulators[C]//Proceedings of the 7th International Con- 续的协作机器人的构型设计提供了一定的参考。 ference on Control,Automation,Robotics and Vision 本文仅在构型的型综合方面进行了分析研 Singapore,Singapore,2002:857-862. [11]YU Chao,JIN Minghe,LIU Hong.An analytical solution 究,没有通过尺度综合得到构型偏置对性能指标 for inverse kinematic of 7-DOF redundant manipulators 的具体影响,下一步的研究会通过相应的性能指 with offset-wrist[C]//Proceedings of 2012 IEEE Interna- 标对机器人的构型进行尺度综合,研究偏置对性 tional Conference on Mechatronics and Automation 能指标的具体影响。 Chengdu,China,2012:92-97. 参考文献: [12]SINGH G K,CLAASSENS J.An analytical solution for the inverse kinematics of a redundant 7DoF manipulator [1]International Organization for Standardization(ISO).Ro- with link offsets[C]//Proceedings of 2010 IEEE/RSJ Inter- bots and robotic devices-Collaborative robots[EB/OL]. national Conference on Intelligent Robots and Systems (2016-02-04)[2017-03-15].https://www.iso.org/standard/ Taipei,Taiwan,China,2010:2976-2982. 62996.html. [13]GOGU G.Structural synthesis of fully-isotropic parallel [2]胡明伟,王洪光,潘新安,等.一种协作型机器人运动性 robots with Schonflies motions via theory of linear trans- 能分析与仿真).智能系统学报,2017,12(1):75-81 formations and evolutionary morphology[J].European HU Mingwei,WANG Hongguang,PAN Xin'an,et al. journal of mechanics-A/solids,2007,26(2):242-269. Analysis and simulation on kinematics performance of a [14]TSAI Y C,SONI A H.The effect of link parameter on the collaborative robot[J].CAAI transactions on intelligent working space of general 3R robot arms[J].Mechanism systems,2017,12(1):75-81. and machine theory,1984,19(1):9-16. [3]侯澈,王争,赵忆文,等.面向直接示教的机器人负载自 [15]VAHRENKAMP N.ASFOUR T,METTA G,et al.Ma- 适应零力控制).机器人,2017,39(4):439-448. nipulability analysis[C]//Proceedings of the 12th IEEE- HOU Che,WANG Zheng,ZHAO Yiwen,et al.Load ad- RAS International Conference on Humanoid Robots. aptive force-free control for the direct teaching of 0saka,Japan,2012:568-573.4 结束语 本文以协作机器人构型为研究目标,首先通 过对现有的典型协作机器人的构型进行了对比分 析,通过构型间的演化过程发现偏置的存在是导 致协作机器人构型差异的重要因素。然后对偏置 进行了定义,并将其分为 S 型和 Y 型,最终得到 了含有偏置的协作机器人基本构型。最后对 iiwa、 Sawyer、Yumi3 种构型进行对比分析,得到不同的 偏置对性能指标的影响不同。其中,偏置降低机 器人的全局性能、工作空间体积性能,但能够提 高机器人的灵活工作空间性能,该分析研究对后 续的协作机器人的构型设计提供了一定的参考。 本文仅在构型的型综合方面进行了分析研 究,没有通过尺度综合得到构型偏置对性能指标 的具体影响,下一步的研究会通过相应的性能指 标对机器人的构型进行尺度综合,研究偏置对性 能指标的具体影响。 参考文献: International Organization for Standardization (ISO). Ro￾bots and robotic devices-Collaborative robots[EB/OL]. (2016-02-04)[2017-03-15]. https://www.iso.org/standard/ 62996.html. [1] 胡明伟, 王洪光, 潘新安, 等. 一种协作型机器人运动性 能分析与仿真[J]. 智能系统学报, 2017, 12(1): 75–81. HU Mingwei, WANG Hongguang, PAN Xin'an, et al. Analysis and simulation on kinematics performance of a collaborative robot[J]. CAAI transactions on intelligent systems, 2017, 12(1): 75–81. [2] 侯澈, 王争, 赵忆文, 等. 面向直接示教的机器人负载自 适应零力控制[J]. 机器人, 2017, 39(4): 439–448. HOU Che, WANG Zheng, ZHAO Yiwen, et al. Load ad￾aptive force-free control for the direct teaching of [3] robots[J]. Robot, 2017, 39(4): 439–448. STOLT A, LINDEROTH M, ROBERTSON A, et al. Ro￾botic assembly of emergency stop buttons[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013. [4] GUIZZO E, ACKERMAN E. How rethink robotics built its new Baxter robot worker[R]. IEEE Spectrum, 2012. [5] WANG Kesheng, LIEN T K. The structure design and kin￾ematics of a robot manipulator-I. Theory[J]. Robotics and computer-integrated manufacturing, 1989, 5(2/3): 153–158. [6] HOLLERBACH J M. Optimum kinematic design for a seven degree of freedom manipulator[C]//Proceedings of the Robotics Research: The Second International Symposi￾um. Cambridge, USA, 1985: 215–222. [7] 归彤, 原培章. 7 自由度机器人的图谱问题[J]. 机器人, 1991, 13(4): 27–30. GUI Tong, YUAN Peizhang. An atlas of 7-DOF robot ma￾nipulators[J]. Robot, 1991, 13(4): 27–30. [8] 赵占芳. 七自由度机器人机构的选型[J]. 机器人, 1989, 3(1): 53–56. ZHAO Zhanfang. The selection of seven degrees of free￾dom robot mechanism[J]. Robot, 1989, 3(1): 53–56. [9] STEVENSON R, SHIRINZADEH B, ALICI G. Singular￾ity avoidance and aspect maintenance in redundant ma￾nipulators[C]//Proceedings of the 7th International Con￾ference on Control, Automation, Robotics and Vision. Singapore, Singapore, 2002: 857–862. [10] YU Chao, JIN Minghe, LIU Hong. An analytical solution for inverse kinematic of 7-DOF redundant manipulators with offset-wrist[C]//Proceedings of 2012 IEEE Interna￾tional Conference on Mechatronics and Automation. Chengdu, China, 2012: 92–97. [11] SINGH G K, CLAASSENS J. An analytical solution for the inverse kinematics of a redundant 7DoF manipulator with link offsets[C]//Proceedings of 2010 IEEE/RSJ Inter￾national Conference on Intelligent Robots and Systems. Taipei, Taiwan, China, 2010: 2976–2982. [12] GOGU G. Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear trans￾formations and evolutionary morphology[J]. European journal of mechanics-A/solids, 2007, 26(2): 242–269. [13] TSAI Y C, SONI A H. The effect of link parameter on the working space of general 3R robot arms[J]. Mechanism and machine theory, 1984, 19(1): 9–16. [14] VAHRENKAMP N, ASFOUR T, METTA G, et al. Ma￾nipulability analysis[C]//Proceedings of the 12th IEEE￾RAS International Conference on Humanoid Robots. Osaka, Japan, 2012: 568–573. [15] 1.0 0.5 0 −0.5 −1.0 −0.5 0 0.5 1.0 z/m x/m (c) Yumi 图 7 工作空间 x-z 截面分布 Fig. 7 Working space x-z cross section distribution ·222· 智 能 系 统 学 报 第 14 卷
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有