正在加载图片...
6.求下列定积分 d (2) 2(x-1)(x (3)「(2+3)at (5)∫ (x +l)d arcsinxax x2+2x+5)2 x tan xax 3 cos- x (10 sin(In x)dx (11)x arc tan xd (12「x2(x=d (13)「 dx d dh (15) (16 7 (19) d x 2 解(1)∫x(2-x)d=4 57105 l)(x2-x+1) x (3)「(2+3)ax=(4+2.62+9157040 In 4 In6 In 3 4)「 (-4xyd(-4)=-(-4x)y (5) x )2-[(x+1)2+42x2+2x+5)16 (6)5 arcsin xdx=xaresinzb-5o 2-dr=3-1 2186. 求下列定积分: ⑴ x x dx ∫ − 1 0 2 2 2 (2 ) ; ⑵ ∫ 2 − − + 1 2 2 2 ( 1)( 1) dx x x x x ; ⑶ ∫ + 2 0 2 (2 3 ) dx x x ; ⑷ ∫ − 2 1 0 2 10 x(1 4x ) dx ; (5) ∫− + + 1 + 1 2 2 ( 2 5) ( 1) x x x dx ; (6) ∫ 1 0 arcsin xdx ; (7) x x dx cos2 4 4 −∫ π π ; (8) ∫ 4 0 2 tan π x xdx ; (9) e sin x x dx 2 0 2 π ∫ ; (10) sin(ln ) e x dx 1 ∫ ; (11) ∫ 1 0 2 x arc tan xdx ; (12) ∫ + − e 1 1 2 x ln(x 1)dx 。 (13) ∫ − ln 2 0 3 2 x e dx x ; (14) ∫ + 1 0 2 1 e dx x ; (15) ∫ + 1 0 2 1 e x dx ; (16) ∫− − 2 1 2 1 2 3 (1 x ) dx ; (17) ∫ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + 1 − 0 4 1 1 dx x x ; (18) ∫ + 1 + 0 4 2 1 1 dx x x ; (19) ∫ + 2 1 2 x 1 x dx ; (20) ∫ − 1 0 2 dx x x x ; 解 (1) 1 1 2 2 2 2 4 6 0 0 441 71 (2 ) (4 4 ) 3 5 7 105 x x − = dx x − x + x dx = − + = ∫ ∫ 。 (2) 2 2 2 2 2 1 1 ( 1)( 1) 1 1 1 ( 1 ) ln 2 2 2 2 x x x x dx dx x x x − − + 2 = − + − = − ∫ ∫ 。 (3) 2 2 2 0 0 15 70 40 (2 3 ) (4 2 6 9 ) ln 4 ln 6 ln 3 x x x x x + = dx + ⋅ + dx = + + ∫ ∫ 。 (4) 1 2 1 1 2 10 2 2 10 2 2 11 2 0 0 0 1 1 (1 4 ) (1 4 ) (1 4 ) (1 4 ) 8 88 x x − = dx − − x d − x = − − x = ∫ ∫ 1 88 。 (5) 2 1 1 1 2 2 2 2 2 1 1 1 ( 1) 1 ( 1) 1 1 ( 2 5) 2 [( 1) 4] 2( 2 5) 1 x dx d x x x x x x − − − + + = = − + + + + + + ∫ ∫ 6 = 。 (6) 1 1 1 0 0 0 2 arcsin arcsin 1 1 2 x xdx x x dx x π = = − − ∫ ∫ − 。 218
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有