B4={事件A恰好出现k次},则有 P(B)=Cpq,k=01…,n 且∑P(B)=1,称此为二项分布 证明:设A={第i次试验出现A},i=1,2 B=A4…4AxH…:4n+…+h… A-kA-k+…:4 P(44…44…4)=R(4)P(4)·fP4)PAk)·P(4)=p4qk f(…Ank.…4)=P(4)(Ank)P(4)…P4)=p4qnk 则有 P(B)=ChPq P(B)=∑Cmpq=(p+q) k=0 A至多出现m次的概率为 P(B)=∑Cp 2.A至少出现m次的概率为 P(B) p q 3.A至少出现1次的概率为 ∑P(B)=1-P(B)=1-Cmp2q0=1-(1-p) 定理:设B={第k次首次出现A},则有 P(B4)=qp,k=1,2 且∑P(B)=1,称此为几何分布。Bk ={事件A恰好出现k次}, 则有 P B C p q k n k k n k k n ( ) = , = 0,1,", − 且 ∑ , 称此为二项分布. = = n k P Bk 0 ( ) 1 证明: 设 ={第i 次试验出现A}, Ai i =1,2,",n k n k n k n n k n k n n k k n k k n k k n k k n k n n k n n k k k P A A A A P A P A P A P A p q P AA A A A P A P A P A P A P A p q B AA A A A A A A A C − − + − − + − − + + − + + − = = = = = + + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 " " " " # # " " " " " " " " " 则有 ( ) ( ) 1 ( ) 0 0 = = + = = ∑ ∑= − = − n n k k k n k n n k k k k n k k n P B C p q p q P B C p q 推论: 1. A 至多出现m 次的概率为: k n k m k k n m k k P B C p q − = = ∑ =∑ 0 0 ( ) ; 2. A 至少出现 m 次的概率为: k n k n k m k n n k m k P B C p q − = = ∑ ( ) = ∑ ; 3. A 至少出现 1 次的概率为: ( ) 1 ( ) 0 1 P B P B n k ∑ k = − = n n n 1 C p q 1 (1 p) 0 0 0 = − = − − − 定理: 设 Bk ={第k 次首次出现 A },则有 P(Bk ) = q k −1 p, k = 1,2" 且 ∑ , 称此为几何分布。 ∞ = = 0 ( ) 1 k P Bk