正在加载图片...
②a=1,01,0 ∫月=(0,1,0.1) a2=(1.1.0.1: 3=(0,1,1,0 a1=(1,0,2,0,) (3){2=(2,0,1,1) ∫=(3.3,1,-2) =(10.-1.1 32=(1,3,0,-3) 解:把由向量生成的子空间和由向量A生成的子空间分别记为W,W2 (1)dim(Wi+W2)=3,dim WinW2 =1, W1+W2的基a1,a2, W1nW3的基:(3,-2,3,8)(=(-2a+112)=-46+33: (2)dim(Wi+Wa)=4,dim=0, W1+W2的基:a1,a2.31,: (3)dim(Wi+W2)=3,dim Win W2=1, W1+W的基a1,a2,尻, WnW2的基(2,0,1,1(=a2=-2) 3.设W,W,W2都是向量空间V的子空间,且 WiS W2,WnWi W nW2:W+W1=W+W2. 证明:W1=W2. 证明dimW+dimW=dim(W+W)+dim(WnW) dim W dim W2 dim(W+W2)+dim(Wn W2), 所以上式右端相等.可得dimW=dimW2.又因WSW2,所以形=W2 4.设V,巧是n维线性空间V的两个子空间.并且满足 dim(+V2)dim(vin V)+1, 证明c或%C 证明:因为dim(%nV2)≤dimV≤dim(%+)-dim(Wn)+l,两个等号中必有一个成 立.如果左边等号成立,则因n巧S,可得n=片,从而二.如果右边等号成立,则因 S片+2,可得M=巧+2,从而吃S作. 5.设V-K4,a1-(1,2,1,2),a2-(2.1,2,1),W-L(a1,a2).求子空间W在V中的一个补空 间 解:设a3=(0,0,1,0),a=(0,0,0,1,则因a1,a2,a3,a4线性无关所以L(0,0,1,0,(0,0,0,1》 是W在V中的一个补空间 6。证明:每一个n维线性空间都是n个一维子空间的直和 证明:设V为n维线性空间,a,…,an是V的基令W=L(a),则V=W+W+…+Wn 又,n=dimV=∑”dimW,所以 V=W⊕…⊕Wn 7.证明:n维线性空间V的每一个真子空间都是若干个n-1维子空间的交 证明:设W是V的真子空间,则r=dimW<dimV=n,取W的一个基a1,··,a,,将其扩充成 V的基a1,…,am.取如下的n-r个n一1维线性子空间 y=(a1,…,a-1,a+1,…,an,j=r+1,…,n 4 (2) ( α1 = (1, 0, 1, 0) α2 = (1, 1, 0, 1); ( β1 = (0, 1, 0.1) β2 = (0, 1, 1, 0); (3)    α1 = (1, 0, 2, 0,) α2 = (2, 0, 1, 1) α3 = (1, 0, −1, 1); ( β1 = (3, 3, 1, −2) β2 = (1, 3, 0, −3). : NN αi *￾pq:N βi *￾pq" W1, W2. (1) dim(W1 + W2) = 3, dim W1 ∩ W2 = 1, W1 + W2 z: α1, α2, β1, W1 ∩ W2 z: (3, −2, 3, 8) ³ = 1 3 (−2α1 + 11α2) = −4β1 + 3β2 ´ ; (2) dim(W1 + W2) = 4, dim W1 ∩ W2 = 0, W1 + W2 z: α1, α2, β1, β2; (3) dim(W1 + W2) = 3, dim W1 ∩ W2 = 1, W1 + W2 z: α1, α2, β1, W1 ∩ W2 z: (2, 0, 1, 1)(= α2 = β1 − β2). 3.  W, W1, W2 m pq V ￾pq, ? W1 ⊆ W2, W ∩ W1 = W ∩ W2, W + W1 = W + W2. ST: W1 = W2. : dim W + dim W1 = dim(W + W1) + dim(W ∩ W1), dim W + dim W2 = dim(W + W2) + dim(W ∩ W2), #$y)aeV. >P dim W1 = dim W2. Q! W1 ⊆ W2, #$ W1 = W2. 4.  V1, V2  n Ft&pq V 7f￾pq, W?-. dim(V1 + V2) = dim(V1 ∩ V2) + 1, ST: V1 ⊆ V2 D V2 ⊆ V1. : !" dim(V1 ∩ V2) 6 dim V1 6 dim(V1 + V2) = dim(V1 ∩ V2) + 1, 7fVY@GHf* +. 8VY*+, J! V1 ∩ V2 ⊆ V1, >P V1 ∩ V2 = V1, C% V1 ⊆ V2. 8VY*+, J! V1 ⊆ V1 + V2, >P V1 = V1 + V2, C% V2 ⊆ V1. 5.  V = K4 , α1 = (1, 2, 1, 2), α2 = (2, 1, 2, 1), W = L(α1, α2). s￾pq W k V HfOp q. :  α3 = (0, 0, 1, 0), α4 = (0, 0, 0, 1), J! α1, α2, α3, α4 t&,*, #$ L((0, 0, 1, 0),(0, 0, 0, 1))  W k V HfOpq. 6. ST: sHf n Ft&pqm n fHF￾pq.:. :  V " n Ft&pq, α1, · · · , αn  V z. I Wi = L(αi), J V = W1 + W2 + · · · + Wn. Q, n = dim V = Pn i=1 dim Wi , #$ V = W1 ⊕ W2 ⊕ · · · ⊕ Wn. 7. ST: n Ft&pq V sHf￾pqmPf n − 1 F￾pq. :  W  V ￾pq, J r = dim W < dim V = n. z W Hfz α1, · · · , αr, v<0* V z α1, · · · , αn. z n − r f n − 1 Ft&￾pq Vj = L(α1, · · · , αj−1, αj+1, · · · , αn), j = r + 1, · · · , n. · 4 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有