In going from the state space model i(t)=A.(t)+ Bu(t y(t)= Ca(t)+ Du(t) to the transfer function G(s)=C(sI -A)-B+D need to form the inverse of the matrix(sI- A)-a symbolic inverse- not easy at all For simple cases, we can use the following
Interpretations With noise in the system, the model is of the form =AC+ Bu+ Buw, y= Ca +U And the estimator is of the form =Ai+ Bu+L(y-9,y=Ci e Analysis: in this case: C-I=[AT+ Bu+Buw-[Ac+ Bu+L(y-gI A(-)-L(CI-Ca)+B
principle[ pr i nsi pI]n.原理 be dependent on依赖,取决于 sample['samp1]vt..样;样值 quantize[ k won t z]v.量化,分层 ode[koud]v.编码;n.码 scheme[ski:m]n.方案,设计,安排 describe[dis'\ k r ai b]vt.叙述,描述 description叙述,描述
I单项选择 1.抽样频率 a. sampling rate b. repetition rate c. sampling frequency 答案:c 2.数字通信 a. digital communication b. digital transmission. transmission path 答案:a