Interpretations With noise in the system, the model is of the form =AC+ Bu+ Buw, y= Ca +U And the estimator is of the form =Ai+ Bu+L(y-9,y=Ci e Analysis: in this case: C-I=[AT+ Bu+Buw-[Ac+ Bu+L(y-gI A(-)-L(CI-Ca)+B
State-Space Systems e Ful-state feedback Control How do we change the poles of the state-space system? Or, even if we can change the pole locations Where do we change the pole locations to? How well does this approach work?
Unit #9 -Calculus of Variations Let u be the actual configuration of a structure or mechanical system. u satisfies the displacement boundary conditions: u=u* on Su. Define