1 Monte Carlo Integration and Variance Reduction 1.1 Monte Carlo Integration 1.1.1 Simple Monte Carlo estimator 1.1.2 Variance and Efficiency 1.2 Variance Reduction 1.3 Antithetic Variables 1.4 Control Variates 1.4.1 Antithetic variate as control variate 1.4.2 Several control variates 1.5 Importance sampling 1.6 Stratified Sampling 1.7 Stratified Importance Sampling
1 Bootstrap and Jackknife 1.1 The Bootstrap 1.1.1 Bootstrap Estimation of Standard Error 1.1.2 Bootstrap Estimation of Bias 1.2 Jackknife 1.3 Jackknife-after-Bootstrap 1.4 Bootstrap Confidence Intervals 1.4.1 The Standard Normal Bootstrap Confidence Interval 1.4.2 The Percentile Bootstrap Confidence Interval 1.4.3 The Basic Bootstrap Confidence Interval 1.4.4 The Bootstrap t interval 1.5 Better Bootstrap Confidence Intervals 1.6 Application: Cross Validation
1 Monte Carlo Methods in Inference 1.1 Monte Carlo Methods for Estimation 1.1.1 Monte Carlo Estimation and Standard Error 1.1.2 Estimation of MSE 1.2 Estimating a confidence level 1.3 Monte Carlo Methods for Hypothesis Tests 1.4 Empirical Type I error rate 1.4.1 Power of a Test 1.4.2 Power Comparisons 1.5 Application: “Count Five” Test for Equal Variance
1 Introduction 1.1 R website 1.2 Differences between R and S 1.3 Start with R 2 Data with R 2.1 Objects 2.2 Reading data in a file 2.3 Saving data 2.4 generating data 2.5 Manipulating objects 2.5.1 Creating objects 2.5.2 Operators 2.5.3 Accessing the values of an object: the indexing system 2.5.4 Accessing the values of an object with names 2.5.5 Arithmetics and simple functions 2.5.6 Matrix Computation