16.61 Aerospace Dynamics Spring 2003 Derivation of lagrangian equations Basic Concept: Virtual Work Consider system of N particles located at(, x2, x,,.x3N )with 3 forces per particle(f. f, f..fn). each in the positive
16.61 Aerospace Dynamics Spring 2003 Lagrange's equations Joseph-Louis lagrange 1736-1813 http://www-groups.dcs.st-and.ac.uk/-history/mathematicians/lagranGe.html Born in Italy. later lived in berlin and paris Originally studied to be a lawyer
ECTURE +2 RIGId BoDY DYNAnIC 工Ap1CAT105FA。R工 GENERAL ROTATIONAL JYNMICS EULER'S EQuATIoN of MOTIoN TORQVE fREE SPECIAL CAsEs PRIMARY LESSONS 3D RoTATONAL MOTION MUCH MORE COMPLEX
16.61 Aerospace Dynamics Spring 2003 Generalized forces revisited Derived Lagrange s equation from d'Alembert's equation ∑m(8x+16y+22)=∑(Fx+F+F。=) Define virtual displacements sx Substitute in and noting the independence of the 8q,, for each
EROSPACE DYNAMiCS EXAMPLE: GWE ACCELERATIoN of THE TIP 0F认ERU0毛R人TM5Hc人AF LDk小 G For A650LUT # CCELER升T10 N UTH RES/∈ct T0wE工NERT1 AL FRAME (∈ TH IN THiS CASE) 0EFNE兵8uNcH0 f PoINTS
Using control authority to transform nonlinear models into linear ones is one of the most commonly used ideas of practical nonlinear control design. Generally, the trick helps one to recognize \simple\nonlinear feedback design tasks